VOLBEM commited on
Commit
5532131
·
verified ·
1 Parent(s): 5f4e04d

Upload folder using huggingface_hub

Browse files
Files changed (39) hide show
  1. added_tokens.json +24 -0
  2. chat_template.jinja +7 -0
  3. config.json +103 -0
  4. generation_config.json +4 -0
  5. global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. global_step1000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. global_step1000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. global_step1000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. global_step1000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. global_step1000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. global_step1000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. global_step1000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. latest +1 -0
  22. merges.txt +0 -0
  23. model-00001-of-00002.safetensors +3 -0
  24. model-00002-of-00002.safetensors +3 -0
  25. model.safetensors.index.json +0 -0
  26. rng_state_0.pth +3 -0
  27. rng_state_1.pth +3 -0
  28. rng_state_2.pth +3 -0
  29. rng_state_3.pth +3 -0
  30. rng_state_4.pth +3 -0
  31. rng_state_5.pth +3 -0
  32. rng_state_6.pth +3 -0
  33. rng_state_7.pth +3 -0
  34. special_tokens_map.json +38 -0
  35. tokenizer_config.json +223 -0
  36. trainer_state.json +894 -0
  37. training_args.bin +3 -0
  38. vocab.json +0 -0
  39. zero_to_fp32.py +760 -0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|AUDIO|>": 151646,
5
+ "<|IMAGE|>": 151655,
6
+ "<|VIDEO|>": 151656,
7
+ "<|audio_bos|>": 151647,
8
+ "<|audio_eos|>": 151648,
9
+ "<|box_end|>": 151649,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|vision_bos|>": 151652,
22
+ "<|vision_eos|>": 151653,
23
+ "<|vision_pad|>": 151654
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}<|im_start|>{{ message['role'] }}
4
+ {% if message['content'] is string %}{{ message['content'] }}<|im_end|>
5
+ {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
6
+ {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
7
+ {% endif %}
config.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "AccustomThinker"
4
+ ],
5
+ "audio_config": {
6
+ "activation_dropout": 0.0,
7
+ "activation_function": "gelu",
8
+ "attention_dropout": 0.0,
9
+ "d_model": 1280,
10
+ "dropout": 0.0,
11
+ "encoder_attention_heads": 20,
12
+ "encoder_ffn_dim": 5120,
13
+ "encoder_layerdrop": 0.0,
14
+ "encoder_layers": 32,
15
+ "init_std": 0.02,
16
+ "initializer_range": 0.02,
17
+ "max_source_positions": 1500,
18
+ "model_type": "qwen2_5_omni_audio_encoder",
19
+ "n_window": 100,
20
+ "num_hidden_layers": 32,
21
+ "num_mel_bins": 128,
22
+ "output_dim": 2048,
23
+ "scale_embedding": false,
24
+ "torch_dtype": "float32"
25
+ },
26
+ "audio_end_token_id": 151648,
27
+ "audio_start_token_id": 151647,
28
+ "audio_token_index": 151646,
29
+ "bos_token_id": 151644,
30
+ "eos_token_id": 151645,
31
+ "ignore_index": -100,
32
+ "image_token_index": 151655,
33
+ "init_std": 0.02,
34
+ "initializer_range": 0.02,
35
+ "model_type": "qwen2_5_omni_thinker",
36
+ "pad_token_id": 151643,
37
+ "position_id_per_seconds": 25,
38
+ "seconds_per_chunk": 2,
39
+ "text_config": {
40
+ "attention_dropout": 0.0,
41
+ "hidden_act": "silu",
42
+ "hidden_size": 2048,
43
+ "init_std": 0.02,
44
+ "initializer_range": 0.02,
45
+ "intermediate_size": 11008,
46
+ "max_position_embeddings": 32768,
47
+ "max_window_layers": 70,
48
+ "model_type": "qwen2_5_omni_text",
49
+ "num_attention_heads": 16,
50
+ "num_hidden_layers": 36,
51
+ "num_key_value_heads": 2,
52
+ "rms_norm_eps": 1e-06,
53
+ "rope_scaling": {
54
+ "mrope_section": [
55
+ 16,
56
+ 24,
57
+ 24
58
+ ],
59
+ "rope_type": "default",
60
+ "type": "default"
61
+ },
62
+ "rope_theta": 1000000.0,
63
+ "sliding_window": 32768,
64
+ "torch_dtype": "float32",
65
+ "use_cache": true,
66
+ "use_sliding_window": false,
67
+ "vocab_size": 151936
68
+ },
69
+ "torch_dtype": "bfloat16",
70
+ "transformers_version": "4.52.3",
71
+ "user_token_id": 872,
72
+ "video_token_index": 151656,
73
+ "vision_config": {
74
+ "depth": 32,
75
+ "embed_dim": 1280,
76
+ "fullatt_block_indexes": [
77
+ 7,
78
+ 15,
79
+ 23,
80
+ 31
81
+ ],
82
+ "hidden_act": "silu",
83
+ "hidden_size": 1280,
84
+ "in_channels": 3,
85
+ "in_chans": 3,
86
+ "init_std": 0.02,
87
+ "initializer_range": 0.02,
88
+ "intermediate_size": 3420,
89
+ "model_type": "qwen2_5_omni_vision_encoder",
90
+ "num_heads": 16,
91
+ "out_hidden_size": 2048,
92
+ "patch_size": 14,
93
+ "spatial_merge_size": 2,
94
+ "spatial_patch_size": 14,
95
+ "temporal_patch_size": 2,
96
+ "tokens_per_second": 25,
97
+ "torch_dtype": "float32",
98
+ "window_size": 112
99
+ },
100
+ "vision_end_token_id": 151653,
101
+ "vision_start_token_id": 151652,
102
+ "vision_token_id": 151654
103
+ }
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.52.3"
4
+ }
global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c705ff181d09603e0134317870903f91b9cdc4b6cca29cc39c817aac63506339
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4a2f6706f2df846522b385308134ab14aa6397eb90d66b15ec108fd9738343c
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ef19352a7047d93bc93485add87af6d2bc305428a892183858d34554c7174f9
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:856541a373c1d9d1c11fd47d1d82d53e31bfa098251f6e60b1f06077b231d91a
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f8ea18c9ee7f3d0c170ba8e56d5def108028cc2c57dff5fb9cc5334f41185c5
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9649bd1a81daaf22b8df363b900dcbf584316768a352bdf079d70671af5fd9a7
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43cae29c6db462b3a48364fed529adbfdfc61dfd2b9105ad976163d934c75fb5
3
+ size 5095659845
global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bad43e8ee6a97a04dc3823a65f0066de10e860b16fd4d5d13aa670c721805cb7
3
+ size 5095659845
global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abbdcb92f3cf5b1b92742748c6f0ad224744a90892577ed42e1ef48cb6b0b470
3
+ size 327584207
global_step1000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4867cef3522762acebfdea1f7eff16c807737c5d53bc46d09ebda7d71e21784d
3
+ size 327584207
global_step1000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e2636e9db75f2670d1801cdb4334250fbd233c4099801b9a8390a7b15fded2
3
+ size 327584207
global_step1000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3636749f4cc2bc86c6039405f692fce4e2b26af5951ba9a50dd7125146971b0a
3
+ size 327584207
global_step1000/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed61f12ce1e432ab91507198bc6667b9c4c0c9672abee7ebc8d3e98a01566724
3
+ size 327584207
global_step1000/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce744d1b83005ccb4715deff6dcbf249de7d927d1c127cb911d555a1de908d46
3
+ size 327584207
global_step1000/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b0fd3695f964c9768c3cdb9c1d0748fbe47c84ead554c8beb44bb9959d184d5
3
+ size 327584207
global_step1000/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:391a48aee32c72a1813ff7435e25510858c6d7e9af0a612e7fa17ae3db5506f2
3
+ size 327584207
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1000
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14d9216c9eabf00decf0b69a3670b99fa32771fe4fa0b96ae98e8e624b1031ba
3
+ size 4994841696
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22b05e23b5345f976d408e55fe9fccb2c44a4574ed3f199e980bcf9c2a51046b
3
+ size 4412249056
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48710b9a70599805c18daba6558fae4bd505ad20153bc960c075808b568dc199
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64057913c08cbc5a331da1b86f8c9959116d1b8f57da5d46b01964018f9b33bc
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fdddd79ebffd22cce641a1f9d877f8f71ee0a1f4d5456b324f1502c24a0afc8
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55f7ffc5f5ef755ee6f41899cbc1c851dd4b531d5a434b37e2a9a173f5681278
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb86677c9c42301e10d06e3d7d7a13feb36bdc968538c0b45a918e0892865d0
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eaf133ee591f519dfd4b31f8e16cd3ce86423781ac46677c03ec2d24b095e13
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e0113a7a68d6c2907c60343a63f5b2c8e10a1b9e9f0733803097fe1bc2e8e5c
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd16c04f5d95db2915d47583857e72337cae993ae34dfd477f05516135f973b2
3
+ size 16389
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|AUDIO|>",
6
+ "<|audio_bos|>",
7
+ "<|audio_eos|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_bos|>",
12
+ "<|vision_eos|>",
13
+ "<|vision_pad|>",
14
+ "<|IMAGE|>",
15
+ "<|VIDEO|>"
16
+ ],
17
+ "audio_bos_token": "<|audio_bos|>",
18
+ "audio_eos_token": "<|audio_eos|>",
19
+ "audio_token": "<|AUDIO|>",
20
+ "eos_token": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "image_token": "<|IMAGE|>",
28
+ "pad_token": {
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ },
35
+ "video_token": "<|VIDEO|>",
36
+ "vision_bos_token": "<|vision_bos|>",
37
+ "vision_eos_token": "<|vision_eos|>"
38
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|AUDIO|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|audio_bos|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|audio_eos|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_bos|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_eos|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|IMAGE|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|VIDEO|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ }
180
+ },
181
+ "additional_special_tokens": [
182
+ "<|im_start|>",
183
+ "<|im_end|>",
184
+ "<|AUDIO|>",
185
+ "<|audio_bos|>",
186
+ "<|audio_eos|>",
187
+ "<|box_end|>",
188
+ "<|quad_start|>",
189
+ "<|quad_end|>",
190
+ "<|vision_bos|>",
191
+ "<|vision_eos|>",
192
+ "<|vision_pad|>",
193
+ "<|IMAGE|>",
194
+ "<|VIDEO|>"
195
+ ],
196
+ "audio_bos_token": "<|audio_bos|>",
197
+ "audio_eos_token": "<|audio_eos|>",
198
+ "audio_token": "<|AUDIO|>",
199
+ "bos_token": null,
200
+ "clean_up_tokenization_spaces": false,
201
+ "eos_token": "<|im_end|>",
202
+ "errors": "replace",
203
+ "extra_special_tokens": {
204
+ "audio_bos_token": "<|audio_bos|>",
205
+ "audio_eos_token": "<|audio_eos|>",
206
+ "audio_token": "<|AUDIO|>",
207
+ "image_token": "<|IMAGE|>",
208
+ "video_token": "<|VIDEO|>",
209
+ "vision_bos_token": "<|vision_bos|>",
210
+ "vision_eos_token": "<|vision_eos|>"
211
+ },
212
+ "image_token": "<|IMAGE|>",
213
+ "model_max_length": 32768,
214
+ "pad_token": "<|endoftext|>",
215
+ "processor_class": "Qwen2_5OmniProcessor",
216
+ "split_special_tokens": false,
217
+ "tokenizer_class": "Qwen2Tokenizer",
218
+ "unk_token": null,
219
+ "use_fast": false,
220
+ "video_token": "<|VIDEO|>",
221
+ "vision_bos_token": "<|vision_bos|>",
222
+ "vision_eos_token": "<|vision_eos|>"
223
+ }
trainer_state.json ADDED
@@ -0,0 +1,894 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 700,
3
+ "best_metric": 0.7593940496444702,
4
+ "best_model_checkpoint": "./thinker_output/07-08_multi_audio/checkpoint-700",
5
+ "epoch": 2.692489053553385,
6
+ "eval_steps": 50,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.02694509936005389,
14
+ "grad_norm": 7.9127708678466355,
15
+ "learning_rate": 5e-05,
16
+ "loss": 2.2253,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.05389019872010778,
21
+ "grad_norm": 2.129170820552183,
22
+ "learning_rate": 4.954792043399639e-05,
23
+ "loss": 1.4156,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.08083529808016167,
28
+ "grad_norm": 2.213231596266166,
29
+ "learning_rate": 4.909584086799277e-05,
30
+ "loss": 1.2292,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.10778039744021556,
35
+ "grad_norm": 1.9446166933638902,
36
+ "learning_rate": 4.864376130198916e-05,
37
+ "loss": 1.1526,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.13472549680026946,
42
+ "grad_norm": 1.8624996582053734,
43
+ "learning_rate": 4.8191681735985535e-05,
44
+ "loss": 1.1116,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.13472549680026946,
49
+ "eval_loss": 1.0801820755004883,
50
+ "eval_runtime": 116.0,
51
+ "eval_samples_per_second": 43.103,
52
+ "eval_steps_per_second": 0.681,
53
+ "step": 50
54
+ },
55
+ {
56
+ "epoch": 0.16167059616032334,
57
+ "grad_norm": 1.644929460056369,
58
+ "learning_rate": 4.773960216998192e-05,
59
+ "loss": 1.0736,
60
+ "step": 60
61
+ },
62
+ {
63
+ "epoch": 0.18861569552037724,
64
+ "grad_norm": 1.9154194240377669,
65
+ "learning_rate": 4.7287522603978304e-05,
66
+ "loss": 1.0532,
67
+ "step": 70
68
+ },
69
+ {
70
+ "epoch": 0.21556079488043112,
71
+ "grad_norm": 1.5827665298198546,
72
+ "learning_rate": 4.683544303797468e-05,
73
+ "loss": 1.0312,
74
+ "step": 80
75
+ },
76
+ {
77
+ "epoch": 0.24250589424048502,
78
+ "grad_norm": 1.429127675663522,
79
+ "learning_rate": 4.638336347197107e-05,
80
+ "loss": 1.0133,
81
+ "step": 90
82
+ },
83
+ {
84
+ "epoch": 0.2694509936005389,
85
+ "grad_norm": 1.4187637596535974,
86
+ "learning_rate": 4.593128390596745e-05,
87
+ "loss": 0.9944,
88
+ "step": 100
89
+ },
90
+ {
91
+ "epoch": 0.2694509936005389,
92
+ "eval_loss": 0.987108588218689,
93
+ "eval_runtime": 113.3326,
94
+ "eval_samples_per_second": 44.118,
95
+ "eval_steps_per_second": 0.697,
96
+ "step": 100
97
+ },
98
+ {
99
+ "epoch": 0.29639609296059277,
100
+ "grad_norm": 1.6143534620181745,
101
+ "learning_rate": 4.547920433996384e-05,
102
+ "loss": 0.9861,
103
+ "step": 110
104
+ },
105
+ {
106
+ "epoch": 0.3233411923206467,
107
+ "grad_norm": 1.470799422498714,
108
+ "learning_rate": 4.5027124773960215e-05,
109
+ "loss": 0.9813,
110
+ "step": 120
111
+ },
112
+ {
113
+ "epoch": 0.3502862916807006,
114
+ "grad_norm": 1.5329678036861214,
115
+ "learning_rate": 4.45750452079566e-05,
116
+ "loss": 0.9725,
117
+ "step": 130
118
+ },
119
+ {
120
+ "epoch": 0.3772313910407545,
121
+ "grad_norm": 1.5683570099493096,
122
+ "learning_rate": 4.4122965641952984e-05,
123
+ "loss": 0.9604,
124
+ "step": 140
125
+ },
126
+ {
127
+ "epoch": 0.40417649040080833,
128
+ "grad_norm": 1.4886000727881106,
129
+ "learning_rate": 4.367088607594937e-05,
130
+ "loss": 0.9494,
131
+ "step": 150
132
+ },
133
+ {
134
+ "epoch": 0.40417649040080833,
135
+ "eval_loss": 0.9371287226676941,
136
+ "eval_runtime": 147.0071,
137
+ "eval_samples_per_second": 34.012,
138
+ "eval_steps_per_second": 0.537,
139
+ "step": 150
140
+ },
141
+ {
142
+ "epoch": 0.43112158976086223,
143
+ "grad_norm": 1.7059179320901345,
144
+ "learning_rate": 4.3218806509945754e-05,
145
+ "loss": 0.9409,
146
+ "step": 160
147
+ },
148
+ {
149
+ "epoch": 0.45806668912091614,
150
+ "grad_norm": 1.3194635069630314,
151
+ "learning_rate": 4.276672694394214e-05,
152
+ "loss": 0.9244,
153
+ "step": 170
154
+ },
155
+ {
156
+ "epoch": 0.48501178848097004,
157
+ "grad_norm": 1.3060771848163875,
158
+ "learning_rate": 4.2314647377938523e-05,
159
+ "loss": 0.9157,
160
+ "step": 180
161
+ },
162
+ {
163
+ "epoch": 0.5119568878410239,
164
+ "grad_norm": 1.4749915311735549,
165
+ "learning_rate": 4.186256781193491e-05,
166
+ "loss": 0.9119,
167
+ "step": 190
168
+ },
169
+ {
170
+ "epoch": 0.5389019872010778,
171
+ "grad_norm": 1.4869922949493382,
172
+ "learning_rate": 4.1410488245931286e-05,
173
+ "loss": 0.913,
174
+ "step": 200
175
+ },
176
+ {
177
+ "epoch": 0.5389019872010778,
178
+ "eval_loss": 0.907091498374939,
179
+ "eval_runtime": 111.8122,
180
+ "eval_samples_per_second": 44.718,
181
+ "eval_steps_per_second": 0.707,
182
+ "step": 200
183
+ },
184
+ {
185
+ "epoch": 0.5658470865611317,
186
+ "grad_norm": 1.4160894102096444,
187
+ "learning_rate": 4.095840867992767e-05,
188
+ "loss": 0.901,
189
+ "step": 210
190
+ },
191
+ {
192
+ "epoch": 0.5927921859211855,
193
+ "grad_norm": 1.5792102697843888,
194
+ "learning_rate": 4.050632911392405e-05,
195
+ "loss": 0.89,
196
+ "step": 220
197
+ },
198
+ {
199
+ "epoch": 0.6197372852812395,
200
+ "grad_norm": 1.2974993115890197,
201
+ "learning_rate": 4.0054249547920434e-05,
202
+ "loss": 0.8863,
203
+ "step": 230
204
+ },
205
+ {
206
+ "epoch": 0.6466823846412934,
207
+ "grad_norm": 1.3514939321309911,
208
+ "learning_rate": 3.960216998191682e-05,
209
+ "loss": 0.8854,
210
+ "step": 240
211
+ },
212
+ {
213
+ "epoch": 0.6736274840013473,
214
+ "grad_norm": 1.266918300985221,
215
+ "learning_rate": 3.9150090415913203e-05,
216
+ "loss": 0.8845,
217
+ "step": 250
218
+ },
219
+ {
220
+ "epoch": 0.6736274840013473,
221
+ "eval_loss": 0.8746693134307861,
222
+ "eval_runtime": 144.3762,
223
+ "eval_samples_per_second": 34.632,
224
+ "eval_steps_per_second": 0.547,
225
+ "step": 250
226
+ },
227
+ {
228
+ "epoch": 0.7005725833614012,
229
+ "grad_norm": 1.3519572583606572,
230
+ "learning_rate": 3.869801084990959e-05,
231
+ "loss": 0.8721,
232
+ "step": 260
233
+ },
234
+ {
235
+ "epoch": 0.727517682721455,
236
+ "grad_norm": 1.2840451675298208,
237
+ "learning_rate": 3.8245931283905966e-05,
238
+ "loss": 0.8736,
239
+ "step": 270
240
+ },
241
+ {
242
+ "epoch": 0.754462782081509,
243
+ "grad_norm": 1.2178137913182443,
244
+ "learning_rate": 3.779385171790235e-05,
245
+ "loss": 0.8664,
246
+ "step": 280
247
+ },
248
+ {
249
+ "epoch": 0.7814078814415628,
250
+ "grad_norm": 1.371387951800443,
251
+ "learning_rate": 3.7341772151898736e-05,
252
+ "loss": 0.8554,
253
+ "step": 290
254
+ },
255
+ {
256
+ "epoch": 0.8083529808016167,
257
+ "grad_norm": 1.344734634165615,
258
+ "learning_rate": 3.688969258589512e-05,
259
+ "loss": 0.8638,
260
+ "step": 300
261
+ },
262
+ {
263
+ "epoch": 0.8083529808016167,
264
+ "eval_loss": 0.8491566181182861,
265
+ "eval_runtime": 146.4614,
266
+ "eval_samples_per_second": 34.139,
267
+ "eval_steps_per_second": 0.539,
268
+ "step": 300
269
+ },
270
+ {
271
+ "epoch": 0.8352980801616706,
272
+ "grad_norm": 1.272788750854563,
273
+ "learning_rate": 3.6437613019891505e-05,
274
+ "loss": 0.8541,
275
+ "step": 310
276
+ },
277
+ {
278
+ "epoch": 0.8622431795217245,
279
+ "grad_norm": 1.3792910383877415,
280
+ "learning_rate": 3.598553345388789e-05,
281
+ "loss": 0.8481,
282
+ "step": 320
283
+ },
284
+ {
285
+ "epoch": 0.8891882788817784,
286
+ "grad_norm": 1.203782825434394,
287
+ "learning_rate": 3.553345388788427e-05,
288
+ "loss": 0.8376,
289
+ "step": 330
290
+ },
291
+ {
292
+ "epoch": 0.9161333782418323,
293
+ "grad_norm": 1.2646961187289552,
294
+ "learning_rate": 3.508137432188065e-05,
295
+ "loss": 0.839,
296
+ "step": 340
297
+ },
298
+ {
299
+ "epoch": 0.9430784776018861,
300
+ "grad_norm": 1.24393119289486,
301
+ "learning_rate": 3.462929475587703e-05,
302
+ "loss": 0.8381,
303
+ "step": 350
304
+ },
305
+ {
306
+ "epoch": 0.9430784776018861,
307
+ "eval_loss": 0.8305084109306335,
308
+ "eval_runtime": 135.5403,
309
+ "eval_samples_per_second": 36.889,
310
+ "eval_steps_per_second": 0.583,
311
+ "step": 350
312
+ },
313
+ {
314
+ "epoch": 0.9700235769619401,
315
+ "grad_norm": 1.2087402616528558,
316
+ "learning_rate": 3.4177215189873416e-05,
317
+ "loss": 0.8264,
318
+ "step": 360
319
+ },
320
+ {
321
+ "epoch": 0.9969686763219939,
322
+ "grad_norm": 1.2771110484442496,
323
+ "learning_rate": 3.37251356238698e-05,
324
+ "loss": 0.8242,
325
+ "step": 370
326
+ },
327
+ {
328
+ "epoch": 1.0215560794880432,
329
+ "grad_norm": 1.332831610585688,
330
+ "learning_rate": 3.3273056057866185e-05,
331
+ "loss": 0.6297,
332
+ "step": 380
333
+ },
334
+ {
335
+ "epoch": 1.048501178848097,
336
+ "grad_norm": 1.2917409109187712,
337
+ "learning_rate": 3.282097649186257e-05,
338
+ "loss": 0.6539,
339
+ "step": 390
340
+ },
341
+ {
342
+ "epoch": 1.0754462782081509,
343
+ "grad_norm": 1.3245733128879162,
344
+ "learning_rate": 3.2368896925858955e-05,
345
+ "loss": 0.6544,
346
+ "step": 400
347
+ },
348
+ {
349
+ "epoch": 1.0754462782081509,
350
+ "eval_loss": 0.8334468007087708,
351
+ "eval_runtime": 148.2965,
352
+ "eval_samples_per_second": 33.716,
353
+ "eval_steps_per_second": 0.533,
354
+ "step": 400
355
+ },
356
+ {
357
+ "epoch": 1.1023913775682048,
358
+ "grad_norm": 1.1724140281525666,
359
+ "learning_rate": 3.191681735985534e-05,
360
+ "loss": 0.6473,
361
+ "step": 410
362
+ },
363
+ {
364
+ "epoch": 1.1293364769282586,
365
+ "grad_norm": 1.2278740780504742,
366
+ "learning_rate": 3.146473779385172e-05,
367
+ "loss": 0.6459,
368
+ "step": 420
369
+ },
370
+ {
371
+ "epoch": 1.1562815762883125,
372
+ "grad_norm": 1.1783670358458123,
373
+ "learning_rate": 3.10126582278481e-05,
374
+ "loss": 0.6573,
375
+ "step": 430
376
+ },
377
+ {
378
+ "epoch": 1.1832266756483665,
379
+ "grad_norm": 1.29897205539554,
380
+ "learning_rate": 3.056057866184449e-05,
381
+ "loss": 0.6548,
382
+ "step": 440
383
+ },
384
+ {
385
+ "epoch": 1.2101717750084204,
386
+ "grad_norm": 1.1568119957121505,
387
+ "learning_rate": 3.010849909584087e-05,
388
+ "loss": 0.65,
389
+ "step": 450
390
+ },
391
+ {
392
+ "epoch": 1.2101717750084204,
393
+ "eval_loss": 0.8229044675827026,
394
+ "eval_runtime": 113.6433,
395
+ "eval_samples_per_second": 43.997,
396
+ "eval_steps_per_second": 0.695,
397
+ "step": 450
398
+ },
399
+ {
400
+ "epoch": 1.2371168743684742,
401
+ "grad_norm": 1.3004916817149637,
402
+ "learning_rate": 2.9656419529837253e-05,
403
+ "loss": 0.6474,
404
+ "step": 460
405
+ },
406
+ {
407
+ "epoch": 1.2640619737285281,
408
+ "grad_norm": 1.212521588358061,
409
+ "learning_rate": 2.9204339963833638e-05,
410
+ "loss": 0.6518,
411
+ "step": 470
412
+ },
413
+ {
414
+ "epoch": 1.291007073088582,
415
+ "grad_norm": 1.2553077221366877,
416
+ "learning_rate": 2.8752260397830023e-05,
417
+ "loss": 0.6456,
418
+ "step": 480
419
+ },
420
+ {
421
+ "epoch": 1.3179521724486358,
422
+ "grad_norm": 1.184218802614123,
423
+ "learning_rate": 2.83001808318264e-05,
424
+ "loss": 0.6546,
425
+ "step": 490
426
+ },
427
+ {
428
+ "epoch": 1.3448972718086898,
429
+ "grad_norm": 1.136986753079325,
430
+ "learning_rate": 2.7848101265822786e-05,
431
+ "loss": 0.6415,
432
+ "step": 500
433
+ },
434
+ {
435
+ "epoch": 1.3448972718086898,
436
+ "eval_loss": 0.8110851049423218,
437
+ "eval_runtime": 137.5711,
438
+ "eval_samples_per_second": 36.345,
439
+ "eval_steps_per_second": 0.574,
440
+ "step": 500
441
+ },
442
+ {
443
+ "epoch": 1.3718423711687437,
444
+ "grad_norm": 1.2143646330707367,
445
+ "learning_rate": 2.7396021699819167e-05,
446
+ "loss": 0.6558,
447
+ "step": 510
448
+ },
449
+ {
450
+ "epoch": 1.3987874705287977,
451
+ "grad_norm": 1.265789637913618,
452
+ "learning_rate": 2.6943942133815552e-05,
453
+ "loss": 0.6505,
454
+ "step": 520
455
+ },
456
+ {
457
+ "epoch": 1.4257325698888514,
458
+ "grad_norm": 1.2191031554639078,
459
+ "learning_rate": 2.6491862567811937e-05,
460
+ "loss": 0.6426,
461
+ "step": 530
462
+ },
463
+ {
464
+ "epoch": 1.4526776692489054,
465
+ "grad_norm": 1.222440942937553,
466
+ "learning_rate": 2.603978300180832e-05,
467
+ "loss": 0.644,
468
+ "step": 540
469
+ },
470
+ {
471
+ "epoch": 1.4796227686089591,
472
+ "grad_norm": 1.1495752286958087,
473
+ "learning_rate": 2.5587703435804706e-05,
474
+ "loss": 0.6415,
475
+ "step": 550
476
+ },
477
+ {
478
+ "epoch": 1.4796227686089591,
479
+ "eval_loss": 0.7958658337593079,
480
+ "eval_runtime": 142.3592,
481
+ "eval_samples_per_second": 35.122,
482
+ "eval_steps_per_second": 0.555,
483
+ "step": 550
484
+ },
485
+ {
486
+ "epoch": 1.506567867969013,
487
+ "grad_norm": 1.2049482092443289,
488
+ "learning_rate": 2.5135623869801084e-05,
489
+ "loss": 0.6395,
490
+ "step": 560
491
+ },
492
+ {
493
+ "epoch": 1.533512967329067,
494
+ "grad_norm": 1.1839061997290048,
495
+ "learning_rate": 2.468354430379747e-05,
496
+ "loss": 0.6441,
497
+ "step": 570
498
+ },
499
+ {
500
+ "epoch": 1.560458066689121,
501
+ "grad_norm": 1.2057965805365276,
502
+ "learning_rate": 2.423146473779385e-05,
503
+ "loss": 0.6335,
504
+ "step": 580
505
+ },
506
+ {
507
+ "epoch": 1.5874031660491748,
508
+ "grad_norm": 1.1650282316989717,
509
+ "learning_rate": 2.3779385171790235e-05,
510
+ "loss": 0.6339,
511
+ "step": 590
512
+ },
513
+ {
514
+ "epoch": 1.6143482654092287,
515
+ "grad_norm": 1.153394411032144,
516
+ "learning_rate": 2.332730560578662e-05,
517
+ "loss": 0.6311,
518
+ "step": 600
519
+ },
520
+ {
521
+ "epoch": 1.6143482654092287,
522
+ "eval_loss": 0.784841775894165,
523
+ "eval_runtime": 153.2005,
524
+ "eval_samples_per_second": 32.637,
525
+ "eval_steps_per_second": 0.516,
526
+ "step": 600
527
+ },
528
+ {
529
+ "epoch": 1.6412933647692824,
530
+ "grad_norm": 1.1963943501637924,
531
+ "learning_rate": 2.2875226039783005e-05,
532
+ "loss": 0.6267,
533
+ "step": 610
534
+ },
535
+ {
536
+ "epoch": 1.6682384641293364,
537
+ "grad_norm": 1.093066884488607,
538
+ "learning_rate": 2.2423146473779386e-05,
539
+ "loss": 0.6289,
540
+ "step": 620
541
+ },
542
+ {
543
+ "epoch": 1.6951835634893904,
544
+ "grad_norm": 1.115011570991967,
545
+ "learning_rate": 2.197106690777577e-05,
546
+ "loss": 0.6299,
547
+ "step": 630
548
+ },
549
+ {
550
+ "epoch": 1.7221286628494443,
551
+ "grad_norm": 1.1700606931618611,
552
+ "learning_rate": 2.1518987341772153e-05,
553
+ "loss": 0.6233,
554
+ "step": 640
555
+ },
556
+ {
557
+ "epoch": 1.7490737622094983,
558
+ "grad_norm": 1.1565551201360744,
559
+ "learning_rate": 2.1066907775768534e-05,
560
+ "loss": 0.624,
561
+ "step": 650
562
+ },
563
+ {
564
+ "epoch": 1.7490737622094983,
565
+ "eval_loss": 0.7739421129226685,
566
+ "eval_runtime": 148.2001,
567
+ "eval_samples_per_second": 33.738,
568
+ "eval_steps_per_second": 0.533,
569
+ "step": 650
570
+ },
571
+ {
572
+ "epoch": 1.776018861569552,
573
+ "grad_norm": 1.2558394571278007,
574
+ "learning_rate": 2.061482820976492e-05,
575
+ "loss": 0.621,
576
+ "step": 660
577
+ },
578
+ {
579
+ "epoch": 1.802963960929606,
580
+ "grad_norm": 1.1487412967519839,
581
+ "learning_rate": 2.0162748643761304e-05,
582
+ "loss": 0.6201,
583
+ "step": 670
584
+ },
585
+ {
586
+ "epoch": 1.8299090602896597,
587
+ "grad_norm": 1.1633700130604714,
588
+ "learning_rate": 1.971066907775769e-05,
589
+ "loss": 0.6182,
590
+ "step": 680
591
+ },
592
+ {
593
+ "epoch": 1.8568541596497137,
594
+ "grad_norm": 1.0892080498580619,
595
+ "learning_rate": 1.925858951175407e-05,
596
+ "loss": 0.6218,
597
+ "step": 690
598
+ },
599
+ {
600
+ "epoch": 1.8837992590097676,
601
+ "grad_norm": 1.162193434275119,
602
+ "learning_rate": 1.8806509945750454e-05,
603
+ "loss": 0.612,
604
+ "step": 700
605
+ },
606
+ {
607
+ "epoch": 1.8837992590097676,
608
+ "eval_loss": 0.7593940496444702,
609
+ "eval_runtime": 113.5973,
610
+ "eval_samples_per_second": 44.015,
611
+ "eval_steps_per_second": 0.695,
612
+ "step": 700
613
+ },
614
+ {
615
+ "epoch": 1.9107443583698216,
616
+ "grad_norm": 1.477614030615022,
617
+ "learning_rate": 1.8354430379746836e-05,
618
+ "loss": 0.4361,
619
+ "step": 710
620
+ },
621
+ {
622
+ "epoch": 1.9376894577298753,
623
+ "grad_norm": 1.211596696990758,
624
+ "learning_rate": 1.7902350813743217e-05,
625
+ "loss": 0.4174,
626
+ "step": 720
627
+ },
628
+ {
629
+ "epoch": 1.9646345570899293,
630
+ "grad_norm": 1.208841417920371,
631
+ "learning_rate": 1.7450271247739602e-05,
632
+ "loss": 0.4162,
633
+ "step": 730
634
+ },
635
+ {
636
+ "epoch": 1.991579656449983,
637
+ "grad_norm": 1.2740412194613278,
638
+ "learning_rate": 1.6998191681735987e-05,
639
+ "loss": 0.4115,
640
+ "step": 740
641
+ },
642
+ {
643
+ "epoch": 2.0188615695520378,
644
+ "grad_norm": 1.1897059830697447,
645
+ "learning_rate": 1.654611211573237e-05,
646
+ "loss": 0.4224,
647
+ "step": 750
648
+ },
649
+ {
650
+ "epoch": 2.0188615695520378,
651
+ "eval_loss": 0.8485522270202637,
652
+ "eval_runtime": 115.805,
653
+ "eval_samples_per_second": 43.176,
654
+ "eval_steps_per_second": 0.682,
655
+ "step": 750
656
+ },
657
+ {
658
+ "epoch": 2.0458066689120917,
659
+ "grad_norm": 1.2120571201563564,
660
+ "learning_rate": 1.6094032549728753e-05,
661
+ "loss": 0.4192,
662
+ "step": 760
663
+ },
664
+ {
665
+ "epoch": 2.0727517682721457,
666
+ "grad_norm": 1.2006852199531266,
667
+ "learning_rate": 1.5641952983725134e-05,
668
+ "loss": 0.4101,
669
+ "step": 770
670
+ },
671
+ {
672
+ "epoch": 2.099696867632199,
673
+ "grad_norm": 1.2005979870584054,
674
+ "learning_rate": 1.5189873417721521e-05,
675
+ "loss": 0.4164,
676
+ "step": 780
677
+ },
678
+ {
679
+ "epoch": 2.126641966992253,
680
+ "grad_norm": 1.148665043003728,
681
+ "learning_rate": 1.4737793851717904e-05,
682
+ "loss": 0.4194,
683
+ "step": 790
684
+ },
685
+ {
686
+ "epoch": 2.153587066352307,
687
+ "grad_norm": 1.134303382163784,
688
+ "learning_rate": 1.4285714285714285e-05,
689
+ "loss": 0.4213,
690
+ "step": 800
691
+ },
692
+ {
693
+ "epoch": 2.153587066352307,
694
+ "eval_loss": 0.838707447052002,
695
+ "eval_runtime": 139.7297,
696
+ "eval_samples_per_second": 35.783,
697
+ "eval_steps_per_second": 0.565,
698
+ "step": 800
699
+ },
700
+ {
701
+ "epoch": 2.180532165712361,
702
+ "grad_norm": 1.2301409422954543,
703
+ "learning_rate": 1.383363471971067e-05,
704
+ "loss": 0.4179,
705
+ "step": 810
706
+ },
707
+ {
708
+ "epoch": 2.207477265072415,
709
+ "grad_norm": 1.1312377076286286,
710
+ "learning_rate": 1.3381555153707053e-05,
711
+ "loss": 0.4178,
712
+ "step": 820
713
+ },
714
+ {
715
+ "epoch": 2.234422364432469,
716
+ "grad_norm": 1.2707527556350058,
717
+ "learning_rate": 1.2929475587703435e-05,
718
+ "loss": 0.4125,
719
+ "step": 830
720
+ },
721
+ {
722
+ "epoch": 2.2613674637925225,
723
+ "grad_norm": 1.185885154215189,
724
+ "learning_rate": 1.247739602169982e-05,
725
+ "loss": 0.414,
726
+ "step": 840
727
+ },
728
+ {
729
+ "epoch": 2.2883125631525765,
730
+ "grad_norm": 1.1012295953218187,
731
+ "learning_rate": 1.2025316455696203e-05,
732
+ "loss": 0.414,
733
+ "step": 850
734
+ },
735
+ {
736
+ "epoch": 2.2883125631525765,
737
+ "eval_loss": 0.831937313079834,
738
+ "eval_runtime": 144.9314,
739
+ "eval_samples_per_second": 34.499,
740
+ "eval_steps_per_second": 0.545,
741
+ "step": 850
742
+ },
743
+ {
744
+ "epoch": 2.3152576625126304,
745
+ "grad_norm": 1.1388819607995708,
746
+ "learning_rate": 1.1573236889692586e-05,
747
+ "loss": 0.4151,
748
+ "step": 860
749
+ },
750
+ {
751
+ "epoch": 2.3422027618726844,
752
+ "grad_norm": 1.2140213674018405,
753
+ "learning_rate": 1.112115732368897e-05,
754
+ "loss": 0.4159,
755
+ "step": 870
756
+ },
757
+ {
758
+ "epoch": 2.3691478612327384,
759
+ "grad_norm": 1.1631774357185438,
760
+ "learning_rate": 1.0669077757685354e-05,
761
+ "loss": 0.4136,
762
+ "step": 880
763
+ },
764
+ {
765
+ "epoch": 2.3960929605927923,
766
+ "grad_norm": 1.24334716793248,
767
+ "learning_rate": 1.0216998191681737e-05,
768
+ "loss": 0.4076,
769
+ "step": 890
770
+ },
771
+ {
772
+ "epoch": 2.4230380599528463,
773
+ "grad_norm": 1.156296740645565,
774
+ "learning_rate": 9.76491862567812e-06,
775
+ "loss": 0.4145,
776
+ "step": 900
777
+ },
778
+ {
779
+ "epoch": 2.4230380599528463,
780
+ "eval_loss": 0.823464572429657,
781
+ "eval_runtime": 141.3831,
782
+ "eval_samples_per_second": 35.365,
783
+ "eval_steps_per_second": 0.559,
784
+ "step": 900
785
+ },
786
+ {
787
+ "epoch": 2.4499831593129,
788
+ "grad_norm": 1.2360058092342656,
789
+ "learning_rate": 9.312839059674505e-06,
790
+ "loss": 0.4071,
791
+ "step": 910
792
+ },
793
+ {
794
+ "epoch": 2.4769282586729537,
795
+ "grad_norm": 1.1672627428975908,
796
+ "learning_rate": 8.860759493670886e-06,
797
+ "loss": 0.4052,
798
+ "step": 920
799
+ },
800
+ {
801
+ "epoch": 2.5038733580330077,
802
+ "grad_norm": 1.142198240950353,
803
+ "learning_rate": 8.408679927667269e-06,
804
+ "loss": 0.3995,
805
+ "step": 930
806
+ },
807
+ {
808
+ "epoch": 2.5308184573930617,
809
+ "grad_norm": 1.1336163759218327,
810
+ "learning_rate": 7.956600361663654e-06,
811
+ "loss": 0.4109,
812
+ "step": 940
813
+ },
814
+ {
815
+ "epoch": 2.5577635567531156,
816
+ "grad_norm": 1.1520513715336371,
817
+ "learning_rate": 7.504520795660036e-06,
818
+ "loss": 0.4021,
819
+ "step": 950
820
+ },
821
+ {
822
+ "epoch": 2.5577635567531156,
823
+ "eval_loss": 0.8257409930229187,
824
+ "eval_runtime": 145.0235,
825
+ "eval_samples_per_second": 34.477,
826
+ "eval_steps_per_second": 0.545,
827
+ "step": 950
828
+ },
829
+ {
830
+ "epoch": 2.5847086561131696,
831
+ "grad_norm": 1.1137257622476067,
832
+ "learning_rate": 7.05244122965642e-06,
833
+ "loss": 0.3979,
834
+ "step": 960
835
+ },
836
+ {
837
+ "epoch": 2.611653755473223,
838
+ "grad_norm": 1.107368997807173,
839
+ "learning_rate": 6.600361663652803e-06,
840
+ "loss": 0.4011,
841
+ "step": 970
842
+ },
843
+ {
844
+ "epoch": 2.638598854833277,
845
+ "grad_norm": 1.1780589934268402,
846
+ "learning_rate": 6.148282097649186e-06,
847
+ "loss": 0.4013,
848
+ "step": 980
849
+ },
850
+ {
851
+ "epoch": 2.665543954193331,
852
+ "grad_norm": 1.174979594904003,
853
+ "learning_rate": 5.69620253164557e-06,
854
+ "loss": 0.3992,
855
+ "step": 990
856
+ },
857
+ {
858
+ "epoch": 2.692489053553385,
859
+ "grad_norm": 1.1164061245257322,
860
+ "learning_rate": 5.244122965641953e-06,
861
+ "loss": 0.393,
862
+ "step": 1000
863
+ },
864
+ {
865
+ "epoch": 2.692489053553385,
866
+ "eval_loss": 0.8172587156295776,
867
+ "eval_runtime": 147.8118,
868
+ "eval_samples_per_second": 33.827,
869
+ "eval_steps_per_second": 0.534,
870
+ "step": 1000
871
+ }
872
+ ],
873
+ "logging_steps": 10,
874
+ "max_steps": 1116,
875
+ "num_input_tokens_seen": 0,
876
+ "num_train_epochs": 3,
877
+ "save_steps": 50,
878
+ "stateful_callbacks": {
879
+ "TrainerControl": {
880
+ "args": {
881
+ "should_epoch_stop": false,
882
+ "should_evaluate": false,
883
+ "should_log": false,
884
+ "should_save": true,
885
+ "should_training_stop": false
886
+ },
887
+ "attributes": {}
888
+ }
889
+ },
890
+ "total_flos": 588328797732864.0,
891
+ "train_batch_size": 4,
892
+ "trial_name": null,
893
+ "trial_params": null
894
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7142dd73a436ab023d78446a9700a5d3d3376496f1ff098532e2130dec697703
3
+ size 8017
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info("Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info("Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)