File size: 13,898 Bytes
a29e65b e1d539f a29e65b 975e472 a29e65b e1d539f a29e65b 975e472 fa1352e a29e65b e1d539f a29e65b 975e472 a29e65b e1d539f a29e65b 6b1ca0c a29e65b e1d539f a29e65b e1d539f a29e65b e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad e1d539f 85ca5ad a29e65b e1d539f a29e65b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
---
language:
- en
license: open-mdw
model_name: ActIO-UI-7B-SFT
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
pipeline_tag: image-text-to-text
tags:
- Multimodal
- VLM
- Computer-Use-Agent
- Web-Agent
- GUI
- Grounding
- GUI Subtask
library_name: transformers
---
<h1 style="
font-family:-apple-system,BlinkMacSystemFont,'Segoe UI',Helvetica,Arial,sans-serif;
font-size:48px;
font-weight:700;
line-height:1.25;
text-align:center;
margin:0 0 24px;">
ActIO-UI: Vision-Language Models for GUI Subtasks
</h1>
<div style="
display:flex;
justify-content:center;
gap:12px;
flex-wrap:wrap;
margin-bottom:28px;">
<a href="?????(homepage)" style="
display:inline-block;
padding:8px 24px;
background:#2b2b2b;
color:#ffffff;
border-radius:36px;
text-decoration:none;
font-weight:600;
font-size:16px;">
🌐 Website (Coming Soon!)
</a>
<a href="https://arxiv.org/abs/2510.09872" style="
display:inline-block;
padding:8px 24px;
background:#2b2b2b;
color:#ffffff;
border-radius:36px;
text-decoration:none;
font-weight:600;
font-size:16px;">
📝 Paper
</a>
<a href="?????(repository)" style="
display:inline-block;
padding:8px 24px;
background:#2b2b2b;
color:#ffffff;
border-radius:36px;
text-decoration:none;
font-weight:600;
font-size:16px;">
💻 Code (Coming Soon!)
</a>
</div>
# Introduction
ActIO-UI-7B-SFT is a model trained for web GUI subtask execution.
We introduce it in the paper [WARC-Bench: Web Archive based Benchmark for GUI Subtask Executions](https://arxiv.org/abs/2510.09872).
Its base model is [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
We define a GUI subtask as a short-horizon web interaction task that correspond to simple natural language instructions within a larger web browsing workflow.
Some examples of subtasks include choosing the correct date in a date picker or scrolling in a container to extract information.
ActIO-UI-7B-SFT achieves state-of-the-art (SOTA) results for open-source models on WARC-Bench, our GUI subtask benchmark.
It also exhibits improved long-horizon GUI task and grounding capabilities when compared with its base model. We provide a performance summary of the ActIO-UI model family below.
<div align="center">
| **Model** | **WARC-Bench (test split)** | **WebArena (no map)** | **Miniwob++** | **ScreenSpot V2** |
|------------------------|------------------------:|----------------------:|--------------:|------------------:|
| ActIO-UI-7B-SFT | 27.33 % | 13.40 % | 29.60 % | 80.03 % |
| ActIO-UI-7B-RLVR | 29.17 % | 7.31 % | 36.27 % | 75.81 % |
| ActIO-UI-72B-SFT | 48.33 % | 23.05 % | 45.87 % | 84.12 % |
| ActIO-UI-72B-RLVR | 52.33 % | 26.80 % | 59.20 % | 82.44 % |
</div>
ActIO-UI is developed by [Orby AI](https://www.orby.ai/), a [Uniphore](https://www.uniphore.com/) company. Please direct all correspondence to [Sanjari Srivastava](mailto:[email protected]) and [Peng Qi](mailto:[email protected]) (first_name.last_name at uniphore.com).
# Model Family
- [ActIO-UI-7B-SFT](https://huggingface.co/Uniphore/actio-ui-7b-sft): a 7B model trained with supervised finetuning (SFT) using distilled subtask data.
- [ActIO-UI-7B-RLVR](?????(model_link)): a 7B model trained with Reinforcement Learning with Verifiable Rewards (RLVR) over the ActIO-UI-7B-SFT checkpoint.
- [ActIO-UI-72B-SFT](?????(model_link)): a 72B model trained with SFT using distilled subtask data.
- [ActIO-UI-72B-RLVR](?????(model_link)): a 72B model trained with RLVR over the ActIO-UI-72B-SFT checkpoint.
# Performance
## GUI Subtask (WARC-Bench)
ActIO-UI models are specifically trained to solve GUI subtask problems. Both the 7B and 72B ActIO-UI RLVR models achieves SOTA performance for their respective sub-categories of 7B or 72B open-source models.
<div align="center">
| **Model** | **Dev [synthetic]** | **Dev [real]** | **Dev [total]** | **Test** |
|---|---:|---:|---:|---:|
| _Closed-source_ | | | | |
| OpenAI computer-use-preview *(2025-03-11)*<sup>CUA</sup> | 62.17 | 49.44 | 58.96 | 33.83 |
| GPT-4o *(2024-11-20)* | 7.87 | 14.51 | 9.54 | 9.17 |
| GPT-5 *(2025-08-07)* | 72.66 | 61.67 | 69.89 | 51.33 |
| Claude Sonnet 4.0 *(2025-05-14)*<sup>CUA</sup> | 79.92 | 76.11 | 78.96 | 47.17 |
| Claude Sonnet 3.7 *(2025-02-19)* | 82.96 | 78.89 | 81.93 | 59.83 |
| Claude Sonnet 4.0 *(2025-05-14)* | <u>84.27</u> | <u>**81.67**</u> | <u>83.61</u> | <u>**64.83**</u> |
| _Open-source — Small_ | | | | |
| Qwen2.5-VL 7B | 16.85 | 11.67 | 15.54 | 4.67 |
| UI-Tars 1.5 7B<sup>CUA</sup> | 44.01 | 26.55 | 39.66 | 10.33 |
| OpenCUA 7B<sup>CUA*</sup> | 48.03 | 41.67 | 46.43 | 14.00 |
| **ActIO-UI-7B-SFT** | 70.60 | <u>54.49</u> | 66.54 | 27.33 |
| **ActIO-UI-7B-RLVR** | <u>78.09</u> | 54.44 | <u>72.13</u> | <u>29.17</u> |
| _Open-source — Large_ | | | | |
| OpenCUA 32B<sup>CUA*</sup> | 51.12 | 41.67 | 48.74 | 17.50 |
| Qwen2.5-VL 72B | 64.23 | 51.67 | 61.06 | 37.33 |
| **ActIO-UI-72B-SFT** | 78.23 | 68.89 | 75.88 | 48.33 |
| **ActIO-UI-72B-RLVR** | <u>**87.64**</u> | <u>78.33</u> | <u>**84.31**</u> | <u>52.33</u> |
<sub>Trajectory-level success rates on WARC-Bench. Small VLMs (7B params) are grouped under “Open-source — Small”. Results are divided into closed (top) vs. open-source (bottom). CUA = evaluated with provider’s computer-use agent; others use our Subtask Vision Agent (SVA) design. Rows marked with <sup>*</sup> denote averages across fewer than 3 runs; all others are averages of 3 runs. <strong>Bold</strong> = best per benchmark. <u>Underline</u> = best inside its sector (closed; open-source small; open-source large).</sub>
</div>
## Other Benchmarks
To access generalizability of GUI subtask execution as a model capability, we compare the performance of ActIO-UI over GUI subtasks (WARC-Bench), long-horizon tasks (WebArena), short-horizon tasks (Miniwob++), and GUI visual grounding (ScreenSpot V2). Without access to any long-horizon and grounding data in its training dataset, our models show improved performance over their base models (except for the grounding performance when compared to Qwen 2.5 VL 72B).
<div align="center">
| **Model** | **WARC-Bench (test split)** | **WebArena (no map)** | **Miniwob++** | **ScreenSpot V2** |
|------------------------|------------------------:|----------------------:|--------------:|------------------:|
| _Public Models_ | | | | |
| Qwen 2.5 VL 7B | 4.67 % | 3.07 % | 12.53 % | 51.62 % |
| Qwen 2.5 VL 72B | 37.33 % | 15.68 % | 53.87 % | **88.05 %** |
| GPT-5 *(2025-08-07)* | 51.33 % | 34.06 % | 52.27 % | 26.39 % |
| Claude 4 Sonnet | **64.83 %** | **37.96 %** | **71.73 %** | 85.06 % |
| _Ours_ | | | | |
| **ActIO-UI-7B-SFT** | 27.33 % | 13.40 % | 29.60 % | 80.03 % |
| **ActIO-UI-7B-RLVR** | 29.17 % | 7.31 % | 36.27 % | 75.81 % |
| **ActIO-UI-72B-SFT** | 48.33 % | 23.05 % | 45.87 % | 84.12 % |
| **ActIO-UI-72B-RLVR** | 52.33 % | 26.80 % | 59.20 % | 82.44 % |
<sub>Each number is an average of 3 runs. **Bold** = best per benchmark. We omit the OpenStreetMap portion of the WebArena benchmark due to technical difficulties with the online map service. For Screenspot V2, we limit the agent action space to \texttt{click(...)} only. For each evaluation, we use the same prompt format built inside our Subtask Vision Agent</sub>
</div>
# Usage
## Image Input Size
To maintain optimal model performance, each input image should be set at **1280 (pixel width) \\(\times\\) 720 (pixel height)**.
## Setup
To run the code snippets below, we recommend that you install everything in `requirements.txt` in a python environment.
```bash
python -m venv ./venv
source venv/bin/activate
pip install -r requirements.txt
```
## Sanity test
Note that this is only a sanity test for ensuring model is working properly.
For replicating the evaluation result or using the model for your own project, please refer to our code repository on [GitHub](?????(repository)).
The following code snippet is also available in the attached sanity.py. So you can just run it with
```{bash}
python sanity.py
```
```{python}
import base64
import sys
import torch
from transformers import AutoTokenizer, AutoModelForVision2Seq, AutoProcessor
from PIL import Image
def encode_image(image_path: str) -> str:
"""Encode image to base64 string for model input."""
with open(image_path, "rb") as f:
return base64.b64encode(f.read()).decode()
def load_model(
model_path: str,
) -> tuple[AutoModelForVision2Seq, AutoTokenizer, AutoProcessor]:
"""Load OpenCUA model, tokenizer, and image processor."""
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForVision2Seq.from_pretrained(
model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
)
image_processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
return model, tokenizer, image_processor
def create_grounding_messages(image_path: str, instruction: str) -> list[dict]:
"""Create chat messages for GUI grounding task."""
system_prompt = (
"You are a GUI agent. You are given a task and a screenshot of the screen. "
"You need to perform a series of pyautogui actions to complete the task."
)
messages = [
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Please perform the following task by providing the action and the coordinates: "
+ instruction,
},
{
"type": "image",
"image": f"data:image/png;base64,{encode_image(image_path)}",
},
],
},
]
return messages
def run_inference(
model: AutoModelForVision2Seq,
tokenizer: AutoTokenizer,
image_processor: AutoProcessor,
messages: list[dict],
image_path: str,
) -> str:
"""Run inference on the model."""
# Prepare text from messages
text = image_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Open image
image = Image.open(image_path).convert("RGB")
# Process inputs using the processor
inputs = image_processor(
text=[text], images=[image], padding=True, return_tensors="pt"
)
# Move inputs to model device
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False,
)
# Decode output (skip the input tokens)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs["input_ids"], generated_ids)
]
output_text = image_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
return output_text
def main():
"""Main function to run the sanity check."""
# Configuration
model_path = "Uniphore/actio-ui-7b-sft" # or other model variants
image_path = "screenshot.png"
instruction = "Click on the submit button"
# Check if custom instruction provided
if len(sys.argv) > 1:
instruction = " ".join(sys.argv[1:])
print(f"Loading model from: {model_path}")
try:
model, tokenizer, image_processor = load_model(model_path)
print("✓ Model loaded successfully")
except Exception as e:
print(f"✗ Error loading model: {e}")
return 1
print(f"Processing image: {image_path}")
print(f"Instruction: {instruction}")
try:
messages = create_grounding_messages(image_path, instruction)
result = run_inference(model, tokenizer, image_processor, messages, image_path)
print("\n" + "=" * 60)
print("MODEL OUTPUT:")
print("=" * 60)
print(result)
print("=" * 60)
return 0
except Exception as e:
print(f"✗ Error during inference: {e}")
import traceback
traceback.print_exc()
return 1
if __name__ == "__main__":
sys.exit(main())
```
# Legal
## License
This project is licensed under the Open Model, Data, & Weights License Agreement (OpenMDW). See the LICENSE file in the root folder for details.
## Prohibited Uses
The model may not be used for any purpose or activity that violates applicable laws or regulations in any jurisdiction.
Use for illegal, unethical, or harmful activities is strictly prohibited.
## Disclaimer
ActIO-UI are intended for research and educational purposes only.
The authors, contributors, and copyright holders are not responsible for any illegal, unethical, or harmful use of the Software, nor for any direct or indirect damages resulting from such use.
Use of the name, logo, or trademarks of "ActIO", "ActIO-UI" "WARC-Bench", or "Uniphore" does not imply any endorsement or affiliation unless separate written permission is obtained.
Users are solely responsible for ensuring their use complies with applicable laws and regulations.
# Citation
If you find our work useful, please cite with
```
@misc{srivastava2025warcbenchwebarchivebased,
title={WARC-Bench: Web Archive Based Benchmark for GUI Subtask Executions},
author={Sanjari Srivastava and Gang Li and Cheng Chang and Rishu Garg and Manpreet Kaur and Charlene Y. Lee and Yuezhang Li and Yining Mao and Ignacio Cases and Yanan Xie and Peng Qi},
year={2025},
eprint={2510.09872},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2510.09872},
}
```
|