Training in progress, step 169, checkpoint
Browse files- checkpoint-169/README.md +202 -0
- checkpoint-169/adapter_config.json +37 -0
- checkpoint-169/adapter_model.safetensors +3 -0
- checkpoint-169/global_step169/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-169/global_step169/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-169/global_step169/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-169/global_step169/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-169/global_step169/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-169/global_step169/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-169/global_step169/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-169/global_step169/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-169/latest +1 -0
- checkpoint-169/rng_state_0.pth +3 -0
- checkpoint-169/rng_state_1.pth +3 -0
- checkpoint-169/rng_state_2.pth +3 -0
- checkpoint-169/rng_state_3.pth +3 -0
- checkpoint-169/scheduler.pt +3 -0
- checkpoint-169/special_tokens_map.json +1026 -0
- checkpoint-169/tokenizer.json +3 -0
- checkpoint-169/tokenizer_config.json +0 -0
- checkpoint-169/trainer_state.json +1296 -0
- checkpoint-169/training_args.bin +3 -0
- checkpoint-169/zero_to_fp32.py +760 -0
checkpoint-169/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: mistralai/Mistral-Small-24B-Instruct-2501
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
checkpoint-169/adapter_config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "mistralai/Mistral-Small-24B-Instruct-2501",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": null,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 128,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.5,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 128,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"gate_proj",
|
| 27 |
+
"down_proj",
|
| 28 |
+
"k_proj",
|
| 29 |
+
"q_proj",
|
| 30 |
+
"o_proj",
|
| 31 |
+
"up_proj",
|
| 32 |
+
"v_proj"
|
| 33 |
+
],
|
| 34 |
+
"task_type": "CAUSAL_LM",
|
| 35 |
+
"use_dora": false,
|
| 36 |
+
"use_rslora": false
|
| 37 |
+
}
|
checkpoint-169/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4add5030ae0e80827be9f59cd190ff187e36df846215413f8d76d04bb86eb2d3
|
| 3 |
+
size 1478569432
|
checkpoint-169/global_step169/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e78a5caffa72406c49d4fdfc98c5e5801970101ac885eb5e3057ef899d0ef0e
|
| 3 |
+
size 1303295536
|
checkpoint-169/global_step169/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82807aa72b907b70acc318fa49d2e747df1591dd53b5779f1da5796bf85756c7
|
| 3 |
+
size 1303295536
|
checkpoint-169/global_step169/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea2e73ad23e806dbf63d10a6004cf35ae1fbb818b0f109435c746ccf639fb2b4
|
| 3 |
+
size 1303295536
|
checkpoint-169/global_step169/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7b25f9b3325a45f38ea60e72f9e84a3dbf16b76e43034aa53a69f5cfac94531
|
| 3 |
+
size 1303295536
|
checkpoint-169/global_step169/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1469e42fb0c2f4affbe6184cb92d7555d10b1257a682e8dacb828f2c337925fe
|
| 3 |
+
size 354241078
|
checkpoint-169/global_step169/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b2bc8791eeeaef9e3abb544a85c2b2098645bc9dec28767185cc8a5ac12abca
|
| 3 |
+
size 354241078
|
checkpoint-169/global_step169/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cfd0d9b6d53a6a447d7d66661c732c8998443bbf8fd39847dc0a5e89fcb450a
|
| 3 |
+
size 354241078
|
checkpoint-169/global_step169/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df848a814eceffb024fa5f4d28bfa13d2c1291bd46bac145388cc003702d3e84
|
| 3 |
+
size 354241078
|
checkpoint-169/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step169
|
checkpoint-169/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6dc761d7143c63661bba58605395cdb8af7f39abb6c12e3a0fecf68e7387db14
|
| 3 |
+
size 14960
|
checkpoint-169/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0f3c98d07fafcc0c02eb819a8c654d2754d60018b71241fdbebde3853f28504
|
| 3 |
+
size 14960
|
checkpoint-169/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e1b90ac4bf3168dfe4d455d7593ca8ea91c5e507eb5447cf8e4c9bfd7ae2338
|
| 3 |
+
size 14960
|
checkpoint-169/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f74bbed0708977476c325febc2d4ab39d1bc2d3e182e541b82efefbf4699cc63
|
| 3 |
+
size 14960
|
checkpoint-169/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e74f591470498343f28f179cf87cb4204fe4b5719af33aa6eb65eddaac23ae1f
|
| 3 |
+
size 1064
|
checkpoint-169/special_tokens_map.json
ADDED
|
@@ -0,0 +1,1026 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<unk>",
|
| 4 |
+
"<s>",
|
| 5 |
+
"</s>",
|
| 6 |
+
"[INST]",
|
| 7 |
+
"[/INST]",
|
| 8 |
+
"[AVAILABLE_TOOLS]",
|
| 9 |
+
"[/AVAILABLE_TOOLS]",
|
| 10 |
+
"[TOOL_RESULTS]",
|
| 11 |
+
"[/TOOL_RESULTS]",
|
| 12 |
+
"[TOOL_CALLS]",
|
| 13 |
+
"[IMG]",
|
| 14 |
+
"<pad>",
|
| 15 |
+
"[IMG_BREAK]",
|
| 16 |
+
"[IMG_END]",
|
| 17 |
+
"[PREFIX]",
|
| 18 |
+
"[MIDDLE]",
|
| 19 |
+
"[SUFFIX]",
|
| 20 |
+
"[SYSTEM_PROMPT]",
|
| 21 |
+
"[/SYSTEM_PROMPT]",
|
| 22 |
+
"[TOOL_CONTENT]",
|
| 23 |
+
"<SPECIAL_20>",
|
| 24 |
+
"<SPECIAL_21>",
|
| 25 |
+
"<SPECIAL_22>",
|
| 26 |
+
"<SPECIAL_23>",
|
| 27 |
+
"<SPECIAL_24>",
|
| 28 |
+
"<SPECIAL_25>",
|
| 29 |
+
"<SPECIAL_26>",
|
| 30 |
+
"<SPECIAL_27>",
|
| 31 |
+
"<SPECIAL_28>",
|
| 32 |
+
"<SPECIAL_29>",
|
| 33 |
+
"<SPECIAL_30>",
|
| 34 |
+
"<SPECIAL_31>",
|
| 35 |
+
"<SPECIAL_32>",
|
| 36 |
+
"<SPECIAL_33>",
|
| 37 |
+
"<SPECIAL_34>",
|
| 38 |
+
"<SPECIAL_35>",
|
| 39 |
+
"<SPECIAL_36>",
|
| 40 |
+
"<SPECIAL_37>",
|
| 41 |
+
"<SPECIAL_38>",
|
| 42 |
+
"<SPECIAL_39>",
|
| 43 |
+
"<SPECIAL_40>",
|
| 44 |
+
"<SPECIAL_41>",
|
| 45 |
+
"<SPECIAL_42>",
|
| 46 |
+
"<SPECIAL_43>",
|
| 47 |
+
"<SPECIAL_44>",
|
| 48 |
+
"<SPECIAL_45>",
|
| 49 |
+
"<SPECIAL_46>",
|
| 50 |
+
"<SPECIAL_47>",
|
| 51 |
+
"<SPECIAL_48>",
|
| 52 |
+
"<SPECIAL_49>",
|
| 53 |
+
"<SPECIAL_50>",
|
| 54 |
+
"<SPECIAL_51>",
|
| 55 |
+
"<SPECIAL_52>",
|
| 56 |
+
"<SPECIAL_53>",
|
| 57 |
+
"<SPECIAL_54>",
|
| 58 |
+
"<SPECIAL_55>",
|
| 59 |
+
"<SPECIAL_56>",
|
| 60 |
+
"<SPECIAL_57>",
|
| 61 |
+
"<SPECIAL_58>",
|
| 62 |
+
"<SPECIAL_59>",
|
| 63 |
+
"<SPECIAL_60>",
|
| 64 |
+
"<SPECIAL_61>",
|
| 65 |
+
"<SPECIAL_62>",
|
| 66 |
+
"<SPECIAL_63>",
|
| 67 |
+
"<SPECIAL_64>",
|
| 68 |
+
"<SPECIAL_65>",
|
| 69 |
+
"<SPECIAL_66>",
|
| 70 |
+
"<SPECIAL_67>",
|
| 71 |
+
"<SPECIAL_68>",
|
| 72 |
+
"<SPECIAL_69>",
|
| 73 |
+
"<SPECIAL_70>",
|
| 74 |
+
"<SPECIAL_71>",
|
| 75 |
+
"<SPECIAL_72>",
|
| 76 |
+
"<SPECIAL_73>",
|
| 77 |
+
"<SPECIAL_74>",
|
| 78 |
+
"<SPECIAL_75>",
|
| 79 |
+
"<SPECIAL_76>",
|
| 80 |
+
"<SPECIAL_77>",
|
| 81 |
+
"<SPECIAL_78>",
|
| 82 |
+
"<SPECIAL_79>",
|
| 83 |
+
"<SPECIAL_80>",
|
| 84 |
+
"<SPECIAL_81>",
|
| 85 |
+
"<SPECIAL_82>",
|
| 86 |
+
"<SPECIAL_83>",
|
| 87 |
+
"<SPECIAL_84>",
|
| 88 |
+
"<SPECIAL_85>",
|
| 89 |
+
"<SPECIAL_86>",
|
| 90 |
+
"<SPECIAL_87>",
|
| 91 |
+
"<SPECIAL_88>",
|
| 92 |
+
"<SPECIAL_89>",
|
| 93 |
+
"<SPECIAL_90>",
|
| 94 |
+
"<SPECIAL_91>",
|
| 95 |
+
"<SPECIAL_92>",
|
| 96 |
+
"<SPECIAL_93>",
|
| 97 |
+
"<SPECIAL_94>",
|
| 98 |
+
"<SPECIAL_95>",
|
| 99 |
+
"<SPECIAL_96>",
|
| 100 |
+
"<SPECIAL_97>",
|
| 101 |
+
"<SPECIAL_98>",
|
| 102 |
+
"<SPECIAL_99>",
|
| 103 |
+
"<SPECIAL_100>",
|
| 104 |
+
"<SPECIAL_101>",
|
| 105 |
+
"<SPECIAL_102>",
|
| 106 |
+
"<SPECIAL_103>",
|
| 107 |
+
"<SPECIAL_104>",
|
| 108 |
+
"<SPECIAL_105>",
|
| 109 |
+
"<SPECIAL_106>",
|
| 110 |
+
"<SPECIAL_107>",
|
| 111 |
+
"<SPECIAL_108>",
|
| 112 |
+
"<SPECIAL_109>",
|
| 113 |
+
"<SPECIAL_110>",
|
| 114 |
+
"<SPECIAL_111>",
|
| 115 |
+
"<SPECIAL_112>",
|
| 116 |
+
"<SPECIAL_113>",
|
| 117 |
+
"<SPECIAL_114>",
|
| 118 |
+
"<SPECIAL_115>",
|
| 119 |
+
"<SPECIAL_116>",
|
| 120 |
+
"<SPECIAL_117>",
|
| 121 |
+
"<SPECIAL_118>",
|
| 122 |
+
"<SPECIAL_119>",
|
| 123 |
+
"<SPECIAL_120>",
|
| 124 |
+
"<SPECIAL_121>",
|
| 125 |
+
"<SPECIAL_122>",
|
| 126 |
+
"<SPECIAL_123>",
|
| 127 |
+
"<SPECIAL_124>",
|
| 128 |
+
"<SPECIAL_125>",
|
| 129 |
+
"<SPECIAL_126>",
|
| 130 |
+
"<SPECIAL_127>",
|
| 131 |
+
"<SPECIAL_128>",
|
| 132 |
+
"<SPECIAL_129>",
|
| 133 |
+
"<SPECIAL_130>",
|
| 134 |
+
"<SPECIAL_131>",
|
| 135 |
+
"<SPECIAL_132>",
|
| 136 |
+
"<SPECIAL_133>",
|
| 137 |
+
"<SPECIAL_134>",
|
| 138 |
+
"<SPECIAL_135>",
|
| 139 |
+
"<SPECIAL_136>",
|
| 140 |
+
"<SPECIAL_137>",
|
| 141 |
+
"<SPECIAL_138>",
|
| 142 |
+
"<SPECIAL_139>",
|
| 143 |
+
"<SPECIAL_140>",
|
| 144 |
+
"<SPECIAL_141>",
|
| 145 |
+
"<SPECIAL_142>",
|
| 146 |
+
"<SPECIAL_143>",
|
| 147 |
+
"<SPECIAL_144>",
|
| 148 |
+
"<SPECIAL_145>",
|
| 149 |
+
"<SPECIAL_146>",
|
| 150 |
+
"<SPECIAL_147>",
|
| 151 |
+
"<SPECIAL_148>",
|
| 152 |
+
"<SPECIAL_149>",
|
| 153 |
+
"<SPECIAL_150>",
|
| 154 |
+
"<SPECIAL_151>",
|
| 155 |
+
"<SPECIAL_152>",
|
| 156 |
+
"<SPECIAL_153>",
|
| 157 |
+
"<SPECIAL_154>",
|
| 158 |
+
"<SPECIAL_155>",
|
| 159 |
+
"<SPECIAL_156>",
|
| 160 |
+
"<SPECIAL_157>",
|
| 161 |
+
"<SPECIAL_158>",
|
| 162 |
+
"<SPECIAL_159>",
|
| 163 |
+
"<SPECIAL_160>",
|
| 164 |
+
"<SPECIAL_161>",
|
| 165 |
+
"<SPECIAL_162>",
|
| 166 |
+
"<SPECIAL_163>",
|
| 167 |
+
"<SPECIAL_164>",
|
| 168 |
+
"<SPECIAL_165>",
|
| 169 |
+
"<SPECIAL_166>",
|
| 170 |
+
"<SPECIAL_167>",
|
| 171 |
+
"<SPECIAL_168>",
|
| 172 |
+
"<SPECIAL_169>",
|
| 173 |
+
"<SPECIAL_170>",
|
| 174 |
+
"<SPECIAL_171>",
|
| 175 |
+
"<SPECIAL_172>",
|
| 176 |
+
"<SPECIAL_173>",
|
| 177 |
+
"<SPECIAL_174>",
|
| 178 |
+
"<SPECIAL_175>",
|
| 179 |
+
"<SPECIAL_176>",
|
| 180 |
+
"<SPECIAL_177>",
|
| 181 |
+
"<SPECIAL_178>",
|
| 182 |
+
"<SPECIAL_179>",
|
| 183 |
+
"<SPECIAL_180>",
|
| 184 |
+
"<SPECIAL_181>",
|
| 185 |
+
"<SPECIAL_182>",
|
| 186 |
+
"<SPECIAL_183>",
|
| 187 |
+
"<SPECIAL_184>",
|
| 188 |
+
"<SPECIAL_185>",
|
| 189 |
+
"<SPECIAL_186>",
|
| 190 |
+
"<SPECIAL_187>",
|
| 191 |
+
"<SPECIAL_188>",
|
| 192 |
+
"<SPECIAL_189>",
|
| 193 |
+
"<SPECIAL_190>",
|
| 194 |
+
"<SPECIAL_191>",
|
| 195 |
+
"<SPECIAL_192>",
|
| 196 |
+
"<SPECIAL_193>",
|
| 197 |
+
"<SPECIAL_194>",
|
| 198 |
+
"<SPECIAL_195>",
|
| 199 |
+
"<SPECIAL_196>",
|
| 200 |
+
"<SPECIAL_197>",
|
| 201 |
+
"<SPECIAL_198>",
|
| 202 |
+
"<SPECIAL_199>",
|
| 203 |
+
"<SPECIAL_200>",
|
| 204 |
+
"<SPECIAL_201>",
|
| 205 |
+
"<SPECIAL_202>",
|
| 206 |
+
"<SPECIAL_203>",
|
| 207 |
+
"<SPECIAL_204>",
|
| 208 |
+
"<SPECIAL_205>",
|
| 209 |
+
"<SPECIAL_206>",
|
| 210 |
+
"<SPECIAL_207>",
|
| 211 |
+
"<SPECIAL_208>",
|
| 212 |
+
"<SPECIAL_209>",
|
| 213 |
+
"<SPECIAL_210>",
|
| 214 |
+
"<SPECIAL_211>",
|
| 215 |
+
"<SPECIAL_212>",
|
| 216 |
+
"<SPECIAL_213>",
|
| 217 |
+
"<SPECIAL_214>",
|
| 218 |
+
"<SPECIAL_215>",
|
| 219 |
+
"<SPECIAL_216>",
|
| 220 |
+
"<SPECIAL_217>",
|
| 221 |
+
"<SPECIAL_218>",
|
| 222 |
+
"<SPECIAL_219>",
|
| 223 |
+
"<SPECIAL_220>",
|
| 224 |
+
"<SPECIAL_221>",
|
| 225 |
+
"<SPECIAL_222>",
|
| 226 |
+
"<SPECIAL_223>",
|
| 227 |
+
"<SPECIAL_224>",
|
| 228 |
+
"<SPECIAL_225>",
|
| 229 |
+
"<SPECIAL_226>",
|
| 230 |
+
"<SPECIAL_227>",
|
| 231 |
+
"<SPECIAL_228>",
|
| 232 |
+
"<SPECIAL_229>",
|
| 233 |
+
"<SPECIAL_230>",
|
| 234 |
+
"<SPECIAL_231>",
|
| 235 |
+
"<SPECIAL_232>",
|
| 236 |
+
"<SPECIAL_233>",
|
| 237 |
+
"<SPECIAL_234>",
|
| 238 |
+
"<SPECIAL_235>",
|
| 239 |
+
"<SPECIAL_236>",
|
| 240 |
+
"<SPECIAL_237>",
|
| 241 |
+
"<SPECIAL_238>",
|
| 242 |
+
"<SPECIAL_239>",
|
| 243 |
+
"<SPECIAL_240>",
|
| 244 |
+
"<SPECIAL_241>",
|
| 245 |
+
"<SPECIAL_242>",
|
| 246 |
+
"<SPECIAL_243>",
|
| 247 |
+
"<SPECIAL_244>",
|
| 248 |
+
"<SPECIAL_245>",
|
| 249 |
+
"<SPECIAL_246>",
|
| 250 |
+
"<SPECIAL_247>",
|
| 251 |
+
"<SPECIAL_248>",
|
| 252 |
+
"<SPECIAL_249>",
|
| 253 |
+
"<SPECIAL_250>",
|
| 254 |
+
"<SPECIAL_251>",
|
| 255 |
+
"<SPECIAL_252>",
|
| 256 |
+
"<SPECIAL_253>",
|
| 257 |
+
"<SPECIAL_254>",
|
| 258 |
+
"<SPECIAL_255>",
|
| 259 |
+
"<SPECIAL_256>",
|
| 260 |
+
"<SPECIAL_257>",
|
| 261 |
+
"<SPECIAL_258>",
|
| 262 |
+
"<SPECIAL_259>",
|
| 263 |
+
"<SPECIAL_260>",
|
| 264 |
+
"<SPECIAL_261>",
|
| 265 |
+
"<SPECIAL_262>",
|
| 266 |
+
"<SPECIAL_263>",
|
| 267 |
+
"<SPECIAL_264>",
|
| 268 |
+
"<SPECIAL_265>",
|
| 269 |
+
"<SPECIAL_266>",
|
| 270 |
+
"<SPECIAL_267>",
|
| 271 |
+
"<SPECIAL_268>",
|
| 272 |
+
"<SPECIAL_269>",
|
| 273 |
+
"<SPECIAL_270>",
|
| 274 |
+
"<SPECIAL_271>",
|
| 275 |
+
"<SPECIAL_272>",
|
| 276 |
+
"<SPECIAL_273>",
|
| 277 |
+
"<SPECIAL_274>",
|
| 278 |
+
"<SPECIAL_275>",
|
| 279 |
+
"<SPECIAL_276>",
|
| 280 |
+
"<SPECIAL_277>",
|
| 281 |
+
"<SPECIAL_278>",
|
| 282 |
+
"<SPECIAL_279>",
|
| 283 |
+
"<SPECIAL_280>",
|
| 284 |
+
"<SPECIAL_281>",
|
| 285 |
+
"<SPECIAL_282>",
|
| 286 |
+
"<SPECIAL_283>",
|
| 287 |
+
"<SPECIAL_284>",
|
| 288 |
+
"<SPECIAL_285>",
|
| 289 |
+
"<SPECIAL_286>",
|
| 290 |
+
"<SPECIAL_287>",
|
| 291 |
+
"<SPECIAL_288>",
|
| 292 |
+
"<SPECIAL_289>",
|
| 293 |
+
"<SPECIAL_290>",
|
| 294 |
+
"<SPECIAL_291>",
|
| 295 |
+
"<SPECIAL_292>",
|
| 296 |
+
"<SPECIAL_293>",
|
| 297 |
+
"<SPECIAL_294>",
|
| 298 |
+
"<SPECIAL_295>",
|
| 299 |
+
"<SPECIAL_296>",
|
| 300 |
+
"<SPECIAL_297>",
|
| 301 |
+
"<SPECIAL_298>",
|
| 302 |
+
"<SPECIAL_299>",
|
| 303 |
+
"<SPECIAL_300>",
|
| 304 |
+
"<SPECIAL_301>",
|
| 305 |
+
"<SPECIAL_302>",
|
| 306 |
+
"<SPECIAL_303>",
|
| 307 |
+
"<SPECIAL_304>",
|
| 308 |
+
"<SPECIAL_305>",
|
| 309 |
+
"<SPECIAL_306>",
|
| 310 |
+
"<SPECIAL_307>",
|
| 311 |
+
"<SPECIAL_308>",
|
| 312 |
+
"<SPECIAL_309>",
|
| 313 |
+
"<SPECIAL_310>",
|
| 314 |
+
"<SPECIAL_311>",
|
| 315 |
+
"<SPECIAL_312>",
|
| 316 |
+
"<SPECIAL_313>",
|
| 317 |
+
"<SPECIAL_314>",
|
| 318 |
+
"<SPECIAL_315>",
|
| 319 |
+
"<SPECIAL_316>",
|
| 320 |
+
"<SPECIAL_317>",
|
| 321 |
+
"<SPECIAL_318>",
|
| 322 |
+
"<SPECIAL_319>",
|
| 323 |
+
"<SPECIAL_320>",
|
| 324 |
+
"<SPECIAL_321>",
|
| 325 |
+
"<SPECIAL_322>",
|
| 326 |
+
"<SPECIAL_323>",
|
| 327 |
+
"<SPECIAL_324>",
|
| 328 |
+
"<SPECIAL_325>",
|
| 329 |
+
"<SPECIAL_326>",
|
| 330 |
+
"<SPECIAL_327>",
|
| 331 |
+
"<SPECIAL_328>",
|
| 332 |
+
"<SPECIAL_329>",
|
| 333 |
+
"<SPECIAL_330>",
|
| 334 |
+
"<SPECIAL_331>",
|
| 335 |
+
"<SPECIAL_332>",
|
| 336 |
+
"<SPECIAL_333>",
|
| 337 |
+
"<SPECIAL_334>",
|
| 338 |
+
"<SPECIAL_335>",
|
| 339 |
+
"<SPECIAL_336>",
|
| 340 |
+
"<SPECIAL_337>",
|
| 341 |
+
"<SPECIAL_338>",
|
| 342 |
+
"<SPECIAL_339>",
|
| 343 |
+
"<SPECIAL_340>",
|
| 344 |
+
"<SPECIAL_341>",
|
| 345 |
+
"<SPECIAL_342>",
|
| 346 |
+
"<SPECIAL_343>",
|
| 347 |
+
"<SPECIAL_344>",
|
| 348 |
+
"<SPECIAL_345>",
|
| 349 |
+
"<SPECIAL_346>",
|
| 350 |
+
"<SPECIAL_347>",
|
| 351 |
+
"<SPECIAL_348>",
|
| 352 |
+
"<SPECIAL_349>",
|
| 353 |
+
"<SPECIAL_350>",
|
| 354 |
+
"<SPECIAL_351>",
|
| 355 |
+
"<SPECIAL_352>",
|
| 356 |
+
"<SPECIAL_353>",
|
| 357 |
+
"<SPECIAL_354>",
|
| 358 |
+
"<SPECIAL_355>",
|
| 359 |
+
"<SPECIAL_356>",
|
| 360 |
+
"<SPECIAL_357>",
|
| 361 |
+
"<SPECIAL_358>",
|
| 362 |
+
"<SPECIAL_359>",
|
| 363 |
+
"<SPECIAL_360>",
|
| 364 |
+
"<SPECIAL_361>",
|
| 365 |
+
"<SPECIAL_362>",
|
| 366 |
+
"<SPECIAL_363>",
|
| 367 |
+
"<SPECIAL_364>",
|
| 368 |
+
"<SPECIAL_365>",
|
| 369 |
+
"<SPECIAL_366>",
|
| 370 |
+
"<SPECIAL_367>",
|
| 371 |
+
"<SPECIAL_368>",
|
| 372 |
+
"<SPECIAL_369>",
|
| 373 |
+
"<SPECIAL_370>",
|
| 374 |
+
"<SPECIAL_371>",
|
| 375 |
+
"<SPECIAL_372>",
|
| 376 |
+
"<SPECIAL_373>",
|
| 377 |
+
"<SPECIAL_374>",
|
| 378 |
+
"<SPECIAL_375>",
|
| 379 |
+
"<SPECIAL_376>",
|
| 380 |
+
"<SPECIAL_377>",
|
| 381 |
+
"<SPECIAL_378>",
|
| 382 |
+
"<SPECIAL_379>",
|
| 383 |
+
"<SPECIAL_380>",
|
| 384 |
+
"<SPECIAL_381>",
|
| 385 |
+
"<SPECIAL_382>",
|
| 386 |
+
"<SPECIAL_383>",
|
| 387 |
+
"<SPECIAL_384>",
|
| 388 |
+
"<SPECIAL_385>",
|
| 389 |
+
"<SPECIAL_386>",
|
| 390 |
+
"<SPECIAL_387>",
|
| 391 |
+
"<SPECIAL_388>",
|
| 392 |
+
"<SPECIAL_389>",
|
| 393 |
+
"<SPECIAL_390>",
|
| 394 |
+
"<SPECIAL_391>",
|
| 395 |
+
"<SPECIAL_392>",
|
| 396 |
+
"<SPECIAL_393>",
|
| 397 |
+
"<SPECIAL_394>",
|
| 398 |
+
"<SPECIAL_395>",
|
| 399 |
+
"<SPECIAL_396>",
|
| 400 |
+
"<SPECIAL_397>",
|
| 401 |
+
"<SPECIAL_398>",
|
| 402 |
+
"<SPECIAL_399>",
|
| 403 |
+
"<SPECIAL_400>",
|
| 404 |
+
"<SPECIAL_401>",
|
| 405 |
+
"<SPECIAL_402>",
|
| 406 |
+
"<SPECIAL_403>",
|
| 407 |
+
"<SPECIAL_404>",
|
| 408 |
+
"<SPECIAL_405>",
|
| 409 |
+
"<SPECIAL_406>",
|
| 410 |
+
"<SPECIAL_407>",
|
| 411 |
+
"<SPECIAL_408>",
|
| 412 |
+
"<SPECIAL_409>",
|
| 413 |
+
"<SPECIAL_410>",
|
| 414 |
+
"<SPECIAL_411>",
|
| 415 |
+
"<SPECIAL_412>",
|
| 416 |
+
"<SPECIAL_413>",
|
| 417 |
+
"<SPECIAL_414>",
|
| 418 |
+
"<SPECIAL_415>",
|
| 419 |
+
"<SPECIAL_416>",
|
| 420 |
+
"<SPECIAL_417>",
|
| 421 |
+
"<SPECIAL_418>",
|
| 422 |
+
"<SPECIAL_419>",
|
| 423 |
+
"<SPECIAL_420>",
|
| 424 |
+
"<SPECIAL_421>",
|
| 425 |
+
"<SPECIAL_422>",
|
| 426 |
+
"<SPECIAL_423>",
|
| 427 |
+
"<SPECIAL_424>",
|
| 428 |
+
"<SPECIAL_425>",
|
| 429 |
+
"<SPECIAL_426>",
|
| 430 |
+
"<SPECIAL_427>",
|
| 431 |
+
"<SPECIAL_428>",
|
| 432 |
+
"<SPECIAL_429>",
|
| 433 |
+
"<SPECIAL_430>",
|
| 434 |
+
"<SPECIAL_431>",
|
| 435 |
+
"<SPECIAL_432>",
|
| 436 |
+
"<SPECIAL_433>",
|
| 437 |
+
"<SPECIAL_434>",
|
| 438 |
+
"<SPECIAL_435>",
|
| 439 |
+
"<SPECIAL_436>",
|
| 440 |
+
"<SPECIAL_437>",
|
| 441 |
+
"<SPECIAL_438>",
|
| 442 |
+
"<SPECIAL_439>",
|
| 443 |
+
"<SPECIAL_440>",
|
| 444 |
+
"<SPECIAL_441>",
|
| 445 |
+
"<SPECIAL_442>",
|
| 446 |
+
"<SPECIAL_443>",
|
| 447 |
+
"<SPECIAL_444>",
|
| 448 |
+
"<SPECIAL_445>",
|
| 449 |
+
"<SPECIAL_446>",
|
| 450 |
+
"<SPECIAL_447>",
|
| 451 |
+
"<SPECIAL_448>",
|
| 452 |
+
"<SPECIAL_449>",
|
| 453 |
+
"<SPECIAL_450>",
|
| 454 |
+
"<SPECIAL_451>",
|
| 455 |
+
"<SPECIAL_452>",
|
| 456 |
+
"<SPECIAL_453>",
|
| 457 |
+
"<SPECIAL_454>",
|
| 458 |
+
"<SPECIAL_455>",
|
| 459 |
+
"<SPECIAL_456>",
|
| 460 |
+
"<SPECIAL_457>",
|
| 461 |
+
"<SPECIAL_458>",
|
| 462 |
+
"<SPECIAL_459>",
|
| 463 |
+
"<SPECIAL_460>",
|
| 464 |
+
"<SPECIAL_461>",
|
| 465 |
+
"<SPECIAL_462>",
|
| 466 |
+
"<SPECIAL_463>",
|
| 467 |
+
"<SPECIAL_464>",
|
| 468 |
+
"<SPECIAL_465>",
|
| 469 |
+
"<SPECIAL_466>",
|
| 470 |
+
"<SPECIAL_467>",
|
| 471 |
+
"<SPECIAL_468>",
|
| 472 |
+
"<SPECIAL_469>",
|
| 473 |
+
"<SPECIAL_470>",
|
| 474 |
+
"<SPECIAL_471>",
|
| 475 |
+
"<SPECIAL_472>",
|
| 476 |
+
"<SPECIAL_473>",
|
| 477 |
+
"<SPECIAL_474>",
|
| 478 |
+
"<SPECIAL_475>",
|
| 479 |
+
"<SPECIAL_476>",
|
| 480 |
+
"<SPECIAL_477>",
|
| 481 |
+
"<SPECIAL_478>",
|
| 482 |
+
"<SPECIAL_479>",
|
| 483 |
+
"<SPECIAL_480>",
|
| 484 |
+
"<SPECIAL_481>",
|
| 485 |
+
"<SPECIAL_482>",
|
| 486 |
+
"<SPECIAL_483>",
|
| 487 |
+
"<SPECIAL_484>",
|
| 488 |
+
"<SPECIAL_485>",
|
| 489 |
+
"<SPECIAL_486>",
|
| 490 |
+
"<SPECIAL_487>",
|
| 491 |
+
"<SPECIAL_488>",
|
| 492 |
+
"<SPECIAL_489>",
|
| 493 |
+
"<SPECIAL_490>",
|
| 494 |
+
"<SPECIAL_491>",
|
| 495 |
+
"<SPECIAL_492>",
|
| 496 |
+
"<SPECIAL_493>",
|
| 497 |
+
"<SPECIAL_494>",
|
| 498 |
+
"<SPECIAL_495>",
|
| 499 |
+
"<SPECIAL_496>",
|
| 500 |
+
"<SPECIAL_497>",
|
| 501 |
+
"<SPECIAL_498>",
|
| 502 |
+
"<SPECIAL_499>",
|
| 503 |
+
"<SPECIAL_500>",
|
| 504 |
+
"<SPECIAL_501>",
|
| 505 |
+
"<SPECIAL_502>",
|
| 506 |
+
"<SPECIAL_503>",
|
| 507 |
+
"<SPECIAL_504>",
|
| 508 |
+
"<SPECIAL_505>",
|
| 509 |
+
"<SPECIAL_506>",
|
| 510 |
+
"<SPECIAL_507>",
|
| 511 |
+
"<SPECIAL_508>",
|
| 512 |
+
"<SPECIAL_509>",
|
| 513 |
+
"<SPECIAL_510>",
|
| 514 |
+
"<SPECIAL_511>",
|
| 515 |
+
"<SPECIAL_512>",
|
| 516 |
+
"<SPECIAL_513>",
|
| 517 |
+
"<SPECIAL_514>",
|
| 518 |
+
"<SPECIAL_515>",
|
| 519 |
+
"<SPECIAL_516>",
|
| 520 |
+
"<SPECIAL_517>",
|
| 521 |
+
"<SPECIAL_518>",
|
| 522 |
+
"<SPECIAL_519>",
|
| 523 |
+
"<SPECIAL_520>",
|
| 524 |
+
"<SPECIAL_521>",
|
| 525 |
+
"<SPECIAL_522>",
|
| 526 |
+
"<SPECIAL_523>",
|
| 527 |
+
"<SPECIAL_524>",
|
| 528 |
+
"<SPECIAL_525>",
|
| 529 |
+
"<SPECIAL_526>",
|
| 530 |
+
"<SPECIAL_527>",
|
| 531 |
+
"<SPECIAL_528>",
|
| 532 |
+
"<SPECIAL_529>",
|
| 533 |
+
"<SPECIAL_530>",
|
| 534 |
+
"<SPECIAL_531>",
|
| 535 |
+
"<SPECIAL_532>",
|
| 536 |
+
"<SPECIAL_533>",
|
| 537 |
+
"<SPECIAL_534>",
|
| 538 |
+
"<SPECIAL_535>",
|
| 539 |
+
"<SPECIAL_536>",
|
| 540 |
+
"<SPECIAL_537>",
|
| 541 |
+
"<SPECIAL_538>",
|
| 542 |
+
"<SPECIAL_539>",
|
| 543 |
+
"<SPECIAL_540>",
|
| 544 |
+
"<SPECIAL_541>",
|
| 545 |
+
"<SPECIAL_542>",
|
| 546 |
+
"<SPECIAL_543>",
|
| 547 |
+
"<SPECIAL_544>",
|
| 548 |
+
"<SPECIAL_545>",
|
| 549 |
+
"<SPECIAL_546>",
|
| 550 |
+
"<SPECIAL_547>",
|
| 551 |
+
"<SPECIAL_548>",
|
| 552 |
+
"<SPECIAL_549>",
|
| 553 |
+
"<SPECIAL_550>",
|
| 554 |
+
"<SPECIAL_551>",
|
| 555 |
+
"<SPECIAL_552>",
|
| 556 |
+
"<SPECIAL_553>",
|
| 557 |
+
"<SPECIAL_554>",
|
| 558 |
+
"<SPECIAL_555>",
|
| 559 |
+
"<SPECIAL_556>",
|
| 560 |
+
"<SPECIAL_557>",
|
| 561 |
+
"<SPECIAL_558>",
|
| 562 |
+
"<SPECIAL_559>",
|
| 563 |
+
"<SPECIAL_560>",
|
| 564 |
+
"<SPECIAL_561>",
|
| 565 |
+
"<SPECIAL_562>",
|
| 566 |
+
"<SPECIAL_563>",
|
| 567 |
+
"<SPECIAL_564>",
|
| 568 |
+
"<SPECIAL_565>",
|
| 569 |
+
"<SPECIAL_566>",
|
| 570 |
+
"<SPECIAL_567>",
|
| 571 |
+
"<SPECIAL_568>",
|
| 572 |
+
"<SPECIAL_569>",
|
| 573 |
+
"<SPECIAL_570>",
|
| 574 |
+
"<SPECIAL_571>",
|
| 575 |
+
"<SPECIAL_572>",
|
| 576 |
+
"<SPECIAL_573>",
|
| 577 |
+
"<SPECIAL_574>",
|
| 578 |
+
"<SPECIAL_575>",
|
| 579 |
+
"<SPECIAL_576>",
|
| 580 |
+
"<SPECIAL_577>",
|
| 581 |
+
"<SPECIAL_578>",
|
| 582 |
+
"<SPECIAL_579>",
|
| 583 |
+
"<SPECIAL_580>",
|
| 584 |
+
"<SPECIAL_581>",
|
| 585 |
+
"<SPECIAL_582>",
|
| 586 |
+
"<SPECIAL_583>",
|
| 587 |
+
"<SPECIAL_584>",
|
| 588 |
+
"<SPECIAL_585>",
|
| 589 |
+
"<SPECIAL_586>",
|
| 590 |
+
"<SPECIAL_587>",
|
| 591 |
+
"<SPECIAL_588>",
|
| 592 |
+
"<SPECIAL_589>",
|
| 593 |
+
"<SPECIAL_590>",
|
| 594 |
+
"<SPECIAL_591>",
|
| 595 |
+
"<SPECIAL_592>",
|
| 596 |
+
"<SPECIAL_593>",
|
| 597 |
+
"<SPECIAL_594>",
|
| 598 |
+
"<SPECIAL_595>",
|
| 599 |
+
"<SPECIAL_596>",
|
| 600 |
+
"<SPECIAL_597>",
|
| 601 |
+
"<SPECIAL_598>",
|
| 602 |
+
"<SPECIAL_599>",
|
| 603 |
+
"<SPECIAL_600>",
|
| 604 |
+
"<SPECIAL_601>",
|
| 605 |
+
"<SPECIAL_602>",
|
| 606 |
+
"<SPECIAL_603>",
|
| 607 |
+
"<SPECIAL_604>",
|
| 608 |
+
"<SPECIAL_605>",
|
| 609 |
+
"<SPECIAL_606>",
|
| 610 |
+
"<SPECIAL_607>",
|
| 611 |
+
"<SPECIAL_608>",
|
| 612 |
+
"<SPECIAL_609>",
|
| 613 |
+
"<SPECIAL_610>",
|
| 614 |
+
"<SPECIAL_611>",
|
| 615 |
+
"<SPECIAL_612>",
|
| 616 |
+
"<SPECIAL_613>",
|
| 617 |
+
"<SPECIAL_614>",
|
| 618 |
+
"<SPECIAL_615>",
|
| 619 |
+
"<SPECIAL_616>",
|
| 620 |
+
"<SPECIAL_617>",
|
| 621 |
+
"<SPECIAL_618>",
|
| 622 |
+
"<SPECIAL_619>",
|
| 623 |
+
"<SPECIAL_620>",
|
| 624 |
+
"<SPECIAL_621>",
|
| 625 |
+
"<SPECIAL_622>",
|
| 626 |
+
"<SPECIAL_623>",
|
| 627 |
+
"<SPECIAL_624>",
|
| 628 |
+
"<SPECIAL_625>",
|
| 629 |
+
"<SPECIAL_626>",
|
| 630 |
+
"<SPECIAL_627>",
|
| 631 |
+
"<SPECIAL_628>",
|
| 632 |
+
"<SPECIAL_629>",
|
| 633 |
+
"<SPECIAL_630>",
|
| 634 |
+
"<SPECIAL_631>",
|
| 635 |
+
"<SPECIAL_632>",
|
| 636 |
+
"<SPECIAL_633>",
|
| 637 |
+
"<SPECIAL_634>",
|
| 638 |
+
"<SPECIAL_635>",
|
| 639 |
+
"<SPECIAL_636>",
|
| 640 |
+
"<SPECIAL_637>",
|
| 641 |
+
"<SPECIAL_638>",
|
| 642 |
+
"<SPECIAL_639>",
|
| 643 |
+
"<SPECIAL_640>",
|
| 644 |
+
"<SPECIAL_641>",
|
| 645 |
+
"<SPECIAL_642>",
|
| 646 |
+
"<SPECIAL_643>",
|
| 647 |
+
"<SPECIAL_644>",
|
| 648 |
+
"<SPECIAL_645>",
|
| 649 |
+
"<SPECIAL_646>",
|
| 650 |
+
"<SPECIAL_647>",
|
| 651 |
+
"<SPECIAL_648>",
|
| 652 |
+
"<SPECIAL_649>",
|
| 653 |
+
"<SPECIAL_650>",
|
| 654 |
+
"<SPECIAL_651>",
|
| 655 |
+
"<SPECIAL_652>",
|
| 656 |
+
"<SPECIAL_653>",
|
| 657 |
+
"<SPECIAL_654>",
|
| 658 |
+
"<SPECIAL_655>",
|
| 659 |
+
"<SPECIAL_656>",
|
| 660 |
+
"<SPECIAL_657>",
|
| 661 |
+
"<SPECIAL_658>",
|
| 662 |
+
"<SPECIAL_659>",
|
| 663 |
+
"<SPECIAL_660>",
|
| 664 |
+
"<SPECIAL_661>",
|
| 665 |
+
"<SPECIAL_662>",
|
| 666 |
+
"<SPECIAL_663>",
|
| 667 |
+
"<SPECIAL_664>",
|
| 668 |
+
"<SPECIAL_665>",
|
| 669 |
+
"<SPECIAL_666>",
|
| 670 |
+
"<SPECIAL_667>",
|
| 671 |
+
"<SPECIAL_668>",
|
| 672 |
+
"<SPECIAL_669>",
|
| 673 |
+
"<SPECIAL_670>",
|
| 674 |
+
"<SPECIAL_671>",
|
| 675 |
+
"<SPECIAL_672>",
|
| 676 |
+
"<SPECIAL_673>",
|
| 677 |
+
"<SPECIAL_674>",
|
| 678 |
+
"<SPECIAL_675>",
|
| 679 |
+
"<SPECIAL_676>",
|
| 680 |
+
"<SPECIAL_677>",
|
| 681 |
+
"<SPECIAL_678>",
|
| 682 |
+
"<SPECIAL_679>",
|
| 683 |
+
"<SPECIAL_680>",
|
| 684 |
+
"<SPECIAL_681>",
|
| 685 |
+
"<SPECIAL_682>",
|
| 686 |
+
"<SPECIAL_683>",
|
| 687 |
+
"<SPECIAL_684>",
|
| 688 |
+
"<SPECIAL_685>",
|
| 689 |
+
"<SPECIAL_686>",
|
| 690 |
+
"<SPECIAL_687>",
|
| 691 |
+
"<SPECIAL_688>",
|
| 692 |
+
"<SPECIAL_689>",
|
| 693 |
+
"<SPECIAL_690>",
|
| 694 |
+
"<SPECIAL_691>",
|
| 695 |
+
"<SPECIAL_692>",
|
| 696 |
+
"<SPECIAL_693>",
|
| 697 |
+
"<SPECIAL_694>",
|
| 698 |
+
"<SPECIAL_695>",
|
| 699 |
+
"<SPECIAL_696>",
|
| 700 |
+
"<SPECIAL_697>",
|
| 701 |
+
"<SPECIAL_698>",
|
| 702 |
+
"<SPECIAL_699>",
|
| 703 |
+
"<SPECIAL_700>",
|
| 704 |
+
"<SPECIAL_701>",
|
| 705 |
+
"<SPECIAL_702>",
|
| 706 |
+
"<SPECIAL_703>",
|
| 707 |
+
"<SPECIAL_704>",
|
| 708 |
+
"<SPECIAL_705>",
|
| 709 |
+
"<SPECIAL_706>",
|
| 710 |
+
"<SPECIAL_707>",
|
| 711 |
+
"<SPECIAL_708>",
|
| 712 |
+
"<SPECIAL_709>",
|
| 713 |
+
"<SPECIAL_710>",
|
| 714 |
+
"<SPECIAL_711>",
|
| 715 |
+
"<SPECIAL_712>",
|
| 716 |
+
"<SPECIAL_713>",
|
| 717 |
+
"<SPECIAL_714>",
|
| 718 |
+
"<SPECIAL_715>",
|
| 719 |
+
"<SPECIAL_716>",
|
| 720 |
+
"<SPECIAL_717>",
|
| 721 |
+
"<SPECIAL_718>",
|
| 722 |
+
"<SPECIAL_719>",
|
| 723 |
+
"<SPECIAL_720>",
|
| 724 |
+
"<SPECIAL_721>",
|
| 725 |
+
"<SPECIAL_722>",
|
| 726 |
+
"<SPECIAL_723>",
|
| 727 |
+
"<SPECIAL_724>",
|
| 728 |
+
"<SPECIAL_725>",
|
| 729 |
+
"<SPECIAL_726>",
|
| 730 |
+
"<SPECIAL_727>",
|
| 731 |
+
"<SPECIAL_728>",
|
| 732 |
+
"<SPECIAL_729>",
|
| 733 |
+
"<SPECIAL_730>",
|
| 734 |
+
"<SPECIAL_731>",
|
| 735 |
+
"<SPECIAL_732>",
|
| 736 |
+
"<SPECIAL_733>",
|
| 737 |
+
"<SPECIAL_734>",
|
| 738 |
+
"<SPECIAL_735>",
|
| 739 |
+
"<SPECIAL_736>",
|
| 740 |
+
"<SPECIAL_737>",
|
| 741 |
+
"<SPECIAL_738>",
|
| 742 |
+
"<SPECIAL_739>",
|
| 743 |
+
"<SPECIAL_740>",
|
| 744 |
+
"<SPECIAL_741>",
|
| 745 |
+
"<SPECIAL_742>",
|
| 746 |
+
"<SPECIAL_743>",
|
| 747 |
+
"<SPECIAL_744>",
|
| 748 |
+
"<SPECIAL_745>",
|
| 749 |
+
"<SPECIAL_746>",
|
| 750 |
+
"<SPECIAL_747>",
|
| 751 |
+
"<SPECIAL_748>",
|
| 752 |
+
"<SPECIAL_749>",
|
| 753 |
+
"<SPECIAL_750>",
|
| 754 |
+
"<SPECIAL_751>",
|
| 755 |
+
"<SPECIAL_752>",
|
| 756 |
+
"<SPECIAL_753>",
|
| 757 |
+
"<SPECIAL_754>",
|
| 758 |
+
"<SPECIAL_755>",
|
| 759 |
+
"<SPECIAL_756>",
|
| 760 |
+
"<SPECIAL_757>",
|
| 761 |
+
"<SPECIAL_758>",
|
| 762 |
+
"<SPECIAL_759>",
|
| 763 |
+
"<SPECIAL_760>",
|
| 764 |
+
"<SPECIAL_761>",
|
| 765 |
+
"<SPECIAL_762>",
|
| 766 |
+
"<SPECIAL_763>",
|
| 767 |
+
"<SPECIAL_764>",
|
| 768 |
+
"<SPECIAL_765>",
|
| 769 |
+
"<SPECIAL_766>",
|
| 770 |
+
"<SPECIAL_767>",
|
| 771 |
+
"<SPECIAL_768>",
|
| 772 |
+
"<SPECIAL_769>",
|
| 773 |
+
"<SPECIAL_770>",
|
| 774 |
+
"<SPECIAL_771>",
|
| 775 |
+
"<SPECIAL_772>",
|
| 776 |
+
"<SPECIAL_773>",
|
| 777 |
+
"<SPECIAL_774>",
|
| 778 |
+
"<SPECIAL_775>",
|
| 779 |
+
"<SPECIAL_776>",
|
| 780 |
+
"<SPECIAL_777>",
|
| 781 |
+
"<SPECIAL_778>",
|
| 782 |
+
"<SPECIAL_779>",
|
| 783 |
+
"<SPECIAL_780>",
|
| 784 |
+
"<SPECIAL_781>",
|
| 785 |
+
"<SPECIAL_782>",
|
| 786 |
+
"<SPECIAL_783>",
|
| 787 |
+
"<SPECIAL_784>",
|
| 788 |
+
"<SPECIAL_785>",
|
| 789 |
+
"<SPECIAL_786>",
|
| 790 |
+
"<SPECIAL_787>",
|
| 791 |
+
"<SPECIAL_788>",
|
| 792 |
+
"<SPECIAL_789>",
|
| 793 |
+
"<SPECIAL_790>",
|
| 794 |
+
"<SPECIAL_791>",
|
| 795 |
+
"<SPECIAL_792>",
|
| 796 |
+
"<SPECIAL_793>",
|
| 797 |
+
"<SPECIAL_794>",
|
| 798 |
+
"<SPECIAL_795>",
|
| 799 |
+
"<SPECIAL_796>",
|
| 800 |
+
"<SPECIAL_797>",
|
| 801 |
+
"<SPECIAL_798>",
|
| 802 |
+
"<SPECIAL_799>",
|
| 803 |
+
"<SPECIAL_800>",
|
| 804 |
+
"<SPECIAL_801>",
|
| 805 |
+
"<SPECIAL_802>",
|
| 806 |
+
"<SPECIAL_803>",
|
| 807 |
+
"<SPECIAL_804>",
|
| 808 |
+
"<SPECIAL_805>",
|
| 809 |
+
"<SPECIAL_806>",
|
| 810 |
+
"<SPECIAL_807>",
|
| 811 |
+
"<SPECIAL_808>",
|
| 812 |
+
"<SPECIAL_809>",
|
| 813 |
+
"<SPECIAL_810>",
|
| 814 |
+
"<SPECIAL_811>",
|
| 815 |
+
"<SPECIAL_812>",
|
| 816 |
+
"<SPECIAL_813>",
|
| 817 |
+
"<SPECIAL_814>",
|
| 818 |
+
"<SPECIAL_815>",
|
| 819 |
+
"<SPECIAL_816>",
|
| 820 |
+
"<SPECIAL_817>",
|
| 821 |
+
"<SPECIAL_818>",
|
| 822 |
+
"<SPECIAL_819>",
|
| 823 |
+
"<SPECIAL_820>",
|
| 824 |
+
"<SPECIAL_821>",
|
| 825 |
+
"<SPECIAL_822>",
|
| 826 |
+
"<SPECIAL_823>",
|
| 827 |
+
"<SPECIAL_824>",
|
| 828 |
+
"<SPECIAL_825>",
|
| 829 |
+
"<SPECIAL_826>",
|
| 830 |
+
"<SPECIAL_827>",
|
| 831 |
+
"<SPECIAL_828>",
|
| 832 |
+
"<SPECIAL_829>",
|
| 833 |
+
"<SPECIAL_830>",
|
| 834 |
+
"<SPECIAL_831>",
|
| 835 |
+
"<SPECIAL_832>",
|
| 836 |
+
"<SPECIAL_833>",
|
| 837 |
+
"<SPECIAL_834>",
|
| 838 |
+
"<SPECIAL_835>",
|
| 839 |
+
"<SPECIAL_836>",
|
| 840 |
+
"<SPECIAL_837>",
|
| 841 |
+
"<SPECIAL_838>",
|
| 842 |
+
"<SPECIAL_839>",
|
| 843 |
+
"<SPECIAL_840>",
|
| 844 |
+
"<SPECIAL_841>",
|
| 845 |
+
"<SPECIAL_842>",
|
| 846 |
+
"<SPECIAL_843>",
|
| 847 |
+
"<SPECIAL_844>",
|
| 848 |
+
"<SPECIAL_845>",
|
| 849 |
+
"<SPECIAL_846>",
|
| 850 |
+
"<SPECIAL_847>",
|
| 851 |
+
"<SPECIAL_848>",
|
| 852 |
+
"<SPECIAL_849>",
|
| 853 |
+
"<SPECIAL_850>",
|
| 854 |
+
"<SPECIAL_851>",
|
| 855 |
+
"<SPECIAL_852>",
|
| 856 |
+
"<SPECIAL_853>",
|
| 857 |
+
"<SPECIAL_854>",
|
| 858 |
+
"<SPECIAL_855>",
|
| 859 |
+
"<SPECIAL_856>",
|
| 860 |
+
"<SPECIAL_857>",
|
| 861 |
+
"<SPECIAL_858>",
|
| 862 |
+
"<SPECIAL_859>",
|
| 863 |
+
"<SPECIAL_860>",
|
| 864 |
+
"<SPECIAL_861>",
|
| 865 |
+
"<SPECIAL_862>",
|
| 866 |
+
"<SPECIAL_863>",
|
| 867 |
+
"<SPECIAL_864>",
|
| 868 |
+
"<SPECIAL_865>",
|
| 869 |
+
"<SPECIAL_866>",
|
| 870 |
+
"<SPECIAL_867>",
|
| 871 |
+
"<SPECIAL_868>",
|
| 872 |
+
"<SPECIAL_869>",
|
| 873 |
+
"<SPECIAL_870>",
|
| 874 |
+
"<SPECIAL_871>",
|
| 875 |
+
"<SPECIAL_872>",
|
| 876 |
+
"<SPECIAL_873>",
|
| 877 |
+
"<SPECIAL_874>",
|
| 878 |
+
"<SPECIAL_875>",
|
| 879 |
+
"<SPECIAL_876>",
|
| 880 |
+
"<SPECIAL_877>",
|
| 881 |
+
"<SPECIAL_878>",
|
| 882 |
+
"<SPECIAL_879>",
|
| 883 |
+
"<SPECIAL_880>",
|
| 884 |
+
"<SPECIAL_881>",
|
| 885 |
+
"<SPECIAL_882>",
|
| 886 |
+
"<SPECIAL_883>",
|
| 887 |
+
"<SPECIAL_884>",
|
| 888 |
+
"<SPECIAL_885>",
|
| 889 |
+
"<SPECIAL_886>",
|
| 890 |
+
"<SPECIAL_887>",
|
| 891 |
+
"<SPECIAL_888>",
|
| 892 |
+
"<SPECIAL_889>",
|
| 893 |
+
"<SPECIAL_890>",
|
| 894 |
+
"<SPECIAL_891>",
|
| 895 |
+
"<SPECIAL_892>",
|
| 896 |
+
"<SPECIAL_893>",
|
| 897 |
+
"<SPECIAL_894>",
|
| 898 |
+
"<SPECIAL_895>",
|
| 899 |
+
"<SPECIAL_896>",
|
| 900 |
+
"<SPECIAL_897>",
|
| 901 |
+
"<SPECIAL_898>",
|
| 902 |
+
"<SPECIAL_899>",
|
| 903 |
+
"<SPECIAL_900>",
|
| 904 |
+
"<SPECIAL_901>",
|
| 905 |
+
"<SPECIAL_902>",
|
| 906 |
+
"<SPECIAL_903>",
|
| 907 |
+
"<SPECIAL_904>",
|
| 908 |
+
"<SPECIAL_905>",
|
| 909 |
+
"<SPECIAL_906>",
|
| 910 |
+
"<SPECIAL_907>",
|
| 911 |
+
"<SPECIAL_908>",
|
| 912 |
+
"<SPECIAL_909>",
|
| 913 |
+
"<SPECIAL_910>",
|
| 914 |
+
"<SPECIAL_911>",
|
| 915 |
+
"<SPECIAL_912>",
|
| 916 |
+
"<SPECIAL_913>",
|
| 917 |
+
"<SPECIAL_914>",
|
| 918 |
+
"<SPECIAL_915>",
|
| 919 |
+
"<SPECIAL_916>",
|
| 920 |
+
"<SPECIAL_917>",
|
| 921 |
+
"<SPECIAL_918>",
|
| 922 |
+
"<SPECIAL_919>",
|
| 923 |
+
"<SPECIAL_920>",
|
| 924 |
+
"<SPECIAL_921>",
|
| 925 |
+
"<SPECIAL_922>",
|
| 926 |
+
"<SPECIAL_923>",
|
| 927 |
+
"<SPECIAL_924>",
|
| 928 |
+
"<SPECIAL_925>",
|
| 929 |
+
"<SPECIAL_926>",
|
| 930 |
+
"<SPECIAL_927>",
|
| 931 |
+
"<SPECIAL_928>",
|
| 932 |
+
"<SPECIAL_929>",
|
| 933 |
+
"<SPECIAL_930>",
|
| 934 |
+
"<SPECIAL_931>",
|
| 935 |
+
"<SPECIAL_932>",
|
| 936 |
+
"<SPECIAL_933>",
|
| 937 |
+
"<SPECIAL_934>",
|
| 938 |
+
"<SPECIAL_935>",
|
| 939 |
+
"<SPECIAL_936>",
|
| 940 |
+
"<SPECIAL_937>",
|
| 941 |
+
"<SPECIAL_938>",
|
| 942 |
+
"<SPECIAL_939>",
|
| 943 |
+
"<SPECIAL_940>",
|
| 944 |
+
"<SPECIAL_941>",
|
| 945 |
+
"<SPECIAL_942>",
|
| 946 |
+
"<SPECIAL_943>",
|
| 947 |
+
"<SPECIAL_944>",
|
| 948 |
+
"<SPECIAL_945>",
|
| 949 |
+
"<SPECIAL_946>",
|
| 950 |
+
"<SPECIAL_947>",
|
| 951 |
+
"<SPECIAL_948>",
|
| 952 |
+
"<SPECIAL_949>",
|
| 953 |
+
"<SPECIAL_950>",
|
| 954 |
+
"<SPECIAL_951>",
|
| 955 |
+
"<SPECIAL_952>",
|
| 956 |
+
"<SPECIAL_953>",
|
| 957 |
+
"<SPECIAL_954>",
|
| 958 |
+
"<SPECIAL_955>",
|
| 959 |
+
"<SPECIAL_956>",
|
| 960 |
+
"<SPECIAL_957>",
|
| 961 |
+
"<SPECIAL_958>",
|
| 962 |
+
"<SPECIAL_959>",
|
| 963 |
+
"<SPECIAL_960>",
|
| 964 |
+
"<SPECIAL_961>",
|
| 965 |
+
"<SPECIAL_962>",
|
| 966 |
+
"<SPECIAL_963>",
|
| 967 |
+
"<SPECIAL_964>",
|
| 968 |
+
"<SPECIAL_965>",
|
| 969 |
+
"<SPECIAL_966>",
|
| 970 |
+
"<SPECIAL_967>",
|
| 971 |
+
"<SPECIAL_968>",
|
| 972 |
+
"<SPECIAL_969>",
|
| 973 |
+
"<SPECIAL_970>",
|
| 974 |
+
"<SPECIAL_971>",
|
| 975 |
+
"<SPECIAL_972>",
|
| 976 |
+
"<SPECIAL_973>",
|
| 977 |
+
"<SPECIAL_974>",
|
| 978 |
+
"<SPECIAL_975>",
|
| 979 |
+
"<SPECIAL_976>",
|
| 980 |
+
"<SPECIAL_977>",
|
| 981 |
+
"<SPECIAL_978>",
|
| 982 |
+
"<SPECIAL_979>",
|
| 983 |
+
"<SPECIAL_980>",
|
| 984 |
+
"<SPECIAL_981>",
|
| 985 |
+
"<SPECIAL_982>",
|
| 986 |
+
"<SPECIAL_983>",
|
| 987 |
+
"<SPECIAL_984>",
|
| 988 |
+
"<SPECIAL_985>",
|
| 989 |
+
"<SPECIAL_986>",
|
| 990 |
+
"<SPECIAL_987>",
|
| 991 |
+
"<SPECIAL_988>",
|
| 992 |
+
"<SPECIAL_989>",
|
| 993 |
+
"<SPECIAL_990>",
|
| 994 |
+
"<SPECIAL_991>",
|
| 995 |
+
"<SPECIAL_992>",
|
| 996 |
+
"<SPECIAL_993>",
|
| 997 |
+
"<SPECIAL_994>",
|
| 998 |
+
"<SPECIAL_995>",
|
| 999 |
+
"<SPECIAL_996>",
|
| 1000 |
+
"<SPECIAL_997>",
|
| 1001 |
+
"<SPECIAL_998>",
|
| 1002 |
+
"<SPECIAL_999>"
|
| 1003 |
+
],
|
| 1004 |
+
"bos_token": {
|
| 1005 |
+
"content": "<s>",
|
| 1006 |
+
"lstrip": false,
|
| 1007 |
+
"normalized": false,
|
| 1008 |
+
"rstrip": false,
|
| 1009 |
+
"single_word": false
|
| 1010 |
+
},
|
| 1011 |
+
"eos_token": {
|
| 1012 |
+
"content": "</s>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false
|
| 1017 |
+
},
|
| 1018 |
+
"pad_token": "</s>",
|
| 1019 |
+
"unk_token": {
|
| 1020 |
+
"content": "<unk>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false
|
| 1025 |
+
}
|
| 1026 |
+
}
|
checkpoint-169/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
|
| 3 |
+
size 17078037
|
checkpoint-169/tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-169/trainer_state.json
ADDED
|
@@ -0,0 +1,1296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 17,
|
| 6 |
+
"global_step": 169,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.005917159763313609,
|
| 13 |
+
"grad_norm": 0.6224875040916811,
|
| 14 |
+
"learning_rate": 3.75e-07,
|
| 15 |
+
"loss": 2.2194,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.005917159763313609,
|
| 20 |
+
"eval_loss": 2.1284265518188477,
|
| 21 |
+
"eval_runtime": 197.2728,
|
| 22 |
+
"eval_samples_per_second": 0.938,
|
| 23 |
+
"eval_steps_per_second": 0.081,
|
| 24 |
+
"step": 1
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.011834319526627219,
|
| 28 |
+
"grad_norm": 0.699774954026372,
|
| 29 |
+
"learning_rate": 7.5e-07,
|
| 30 |
+
"loss": 2.2098,
|
| 31 |
+
"step": 2
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.01775147928994083,
|
| 35 |
+
"grad_norm": 0.8978069601988599,
|
| 36 |
+
"learning_rate": 1.125e-06,
|
| 37 |
+
"loss": 2.0771,
|
| 38 |
+
"step": 3
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.023668639053254437,
|
| 42 |
+
"grad_norm": 0.603433372430734,
|
| 43 |
+
"learning_rate": 1.5e-06,
|
| 44 |
+
"loss": 2.1207,
|
| 45 |
+
"step": 4
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.029585798816568046,
|
| 49 |
+
"grad_norm": 0.6705451670098455,
|
| 50 |
+
"learning_rate": 1.875e-06,
|
| 51 |
+
"loss": 2.0443,
|
| 52 |
+
"step": 5
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.03550295857988166,
|
| 56 |
+
"grad_norm": 0.5685871807834867,
|
| 57 |
+
"learning_rate": 2.25e-06,
|
| 58 |
+
"loss": 2.0938,
|
| 59 |
+
"step": 6
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.04142011834319527,
|
| 63 |
+
"grad_norm": 0.6813185340138558,
|
| 64 |
+
"learning_rate": 2.6250000000000003e-06,
|
| 65 |
+
"loss": 2.0113,
|
| 66 |
+
"step": 7
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.047337278106508875,
|
| 70 |
+
"grad_norm": 1.461724410712979,
|
| 71 |
+
"learning_rate": 3e-06,
|
| 72 |
+
"loss": 1.9878,
|
| 73 |
+
"step": 8
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.05325443786982249,
|
| 77 |
+
"grad_norm": 0.4806729570541462,
|
| 78 |
+
"learning_rate": 2.999785830935332e-06,
|
| 79 |
+
"loss": 2.1648,
|
| 80 |
+
"step": 9
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.05917159763313609,
|
| 84 |
+
"grad_norm": 0.6450195095319927,
|
| 85 |
+
"learning_rate": 2.999143405285129e-06,
|
| 86 |
+
"loss": 2.1168,
|
| 87 |
+
"step": 10
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.0650887573964497,
|
| 91 |
+
"grad_norm": 0.5199179785432192,
|
| 92 |
+
"learning_rate": 2.998072967649747e-06,
|
| 93 |
+
"loss": 2.1624,
|
| 94 |
+
"step": 11
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.07100591715976332,
|
| 98 |
+
"grad_norm": 0.5888842243430149,
|
| 99 |
+
"learning_rate": 2.9965749255929686e-06,
|
| 100 |
+
"loss": 2.0793,
|
| 101 |
+
"step": 12
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.07692307692307693,
|
| 105 |
+
"grad_norm": 0.5762628204395337,
|
| 106 |
+
"learning_rate": 2.9946498494868224e-06,
|
| 107 |
+
"loss": 2.1745,
|
| 108 |
+
"step": 13
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.08284023668639054,
|
| 112 |
+
"grad_norm": 0.4611886576496398,
|
| 113 |
+
"learning_rate": 2.9922984722944177e-06,
|
| 114 |
+
"loss": 2.1977,
|
| 115 |
+
"step": 14
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.08875739644970414,
|
| 119 |
+
"grad_norm": 0.4176129104372226,
|
| 120 |
+
"learning_rate": 2.9895216892908717e-06,
|
| 121 |
+
"loss": 2.1568,
|
| 122 |
+
"step": 15
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.09467455621301775,
|
| 126 |
+
"grad_norm": 0.9682295199118589,
|
| 127 |
+
"learning_rate": 2.9863205577224416e-06,
|
| 128 |
+
"loss": 2.181,
|
| 129 |
+
"step": 16
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.10059171597633136,
|
| 133 |
+
"grad_norm": 0.4087372617870282,
|
| 134 |
+
"learning_rate": 2.982696296403978e-06,
|
| 135 |
+
"loss": 2.2208,
|
| 136 |
+
"step": 17
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.10059171597633136,
|
| 140 |
+
"eval_loss": 2.090203285217285,
|
| 141 |
+
"eval_runtime": 197.1425,
|
| 142 |
+
"eval_samples_per_second": 0.938,
|
| 143 |
+
"eval_steps_per_second": 0.081,
|
| 144 |
+
"step": 17
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"epoch": 0.10650887573964497,
|
| 148 |
+
"grad_norm": 0.6944983731430622,
|
| 149 |
+
"learning_rate": 2.9786502852548696e-06,
|
| 150 |
+
"loss": 1.9687,
|
| 151 |
+
"step": 18
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"epoch": 0.11242603550295859,
|
| 155 |
+
"grad_norm": 0.42170107190665923,
|
| 156 |
+
"learning_rate": 2.9741840647736478e-06,
|
| 157 |
+
"loss": 2.1707,
|
| 158 |
+
"step": 19
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.11834319526627218,
|
| 162 |
+
"grad_norm": 0.5031933608002007,
|
| 163 |
+
"learning_rate": 2.9692993354514477e-06,
|
| 164 |
+
"loss": 1.838,
|
| 165 |
+
"step": 20
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.1242603550295858,
|
| 169 |
+
"grad_norm": 0.401561752549318,
|
| 170 |
+
"learning_rate": 2.9639979571245524e-06,
|
| 171 |
+
"loss": 2.1108,
|
| 172 |
+
"step": 21
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"epoch": 0.1301775147928994,
|
| 176 |
+
"grad_norm": 0.4745388099037245,
|
| 177 |
+
"learning_rate": 2.958281948266274e-06,
|
| 178 |
+
"loss": 2.0944,
|
| 179 |
+
"step": 22
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"epoch": 0.13609467455621302,
|
| 183 |
+
"grad_norm": 0.3966815146465992,
|
| 184 |
+
"learning_rate": 2.952153485218428e-06,
|
| 185 |
+
"loss": 2.1954,
|
| 186 |
+
"step": 23
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"epoch": 0.14201183431952663,
|
| 190 |
+
"grad_norm": 0.38324183695928576,
|
| 191 |
+
"learning_rate": 2.9456149013627003e-06,
|
| 192 |
+
"loss": 2.0669,
|
| 193 |
+
"step": 24
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 0.14792899408284024,
|
| 197 |
+
"grad_norm": 0.45238869305755414,
|
| 198 |
+
"learning_rate": 2.9386686862322264e-06,
|
| 199 |
+
"loss": 2.0082,
|
| 200 |
+
"step": 25
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.15384615384615385,
|
| 204 |
+
"grad_norm": 0.43587746677118455,
|
| 205 |
+
"learning_rate": 2.9313174845637132e-06,
|
| 206 |
+
"loss": 2.0851,
|
| 207 |
+
"step": 26
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.15976331360946747,
|
| 211 |
+
"grad_norm": 0.3280269395122322,
|
| 212 |
+
"learning_rate": 2.9235640952904685e-06,
|
| 213 |
+
"loss": 2.1769,
|
| 214 |
+
"step": 27
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"epoch": 0.16568047337278108,
|
| 218 |
+
"grad_norm": 0.3364191479742792,
|
| 219 |
+
"learning_rate": 2.91541147047672e-06,
|
| 220 |
+
"loss": 2.1024,
|
| 221 |
+
"step": 28
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 0.17159763313609466,
|
| 225 |
+
"grad_norm": 0.36098339761423204,
|
| 226 |
+
"learning_rate": 2.9068627141936344e-06,
|
| 227 |
+
"loss": 1.9672,
|
| 228 |
+
"step": 29
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"epoch": 0.17751479289940827,
|
| 232 |
+
"grad_norm": 0.39425457725953256,
|
| 233 |
+
"learning_rate": 2.897921081337456e-06,
|
| 234 |
+
"loss": 2.0966,
|
| 235 |
+
"step": 30
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"epoch": 0.1834319526627219,
|
| 239 |
+
"grad_norm": 0.6235048469037876,
|
| 240 |
+
"learning_rate": 2.8885899763902215e-06,
|
| 241 |
+
"loss": 2.0379,
|
| 242 |
+
"step": 31
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.1893491124260355,
|
| 246 |
+
"grad_norm": 0.5041187119001387,
|
| 247 |
+
"learning_rate": 2.878872952123519e-06,
|
| 248 |
+
"loss": 1.969,
|
| 249 |
+
"step": 32
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.1952662721893491,
|
| 253 |
+
"grad_norm": 0.5682354341756487,
|
| 254 |
+
"learning_rate": 2.8687737082457906e-06,
|
| 255 |
+
"loss": 1.9563,
|
| 256 |
+
"step": 33
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"epoch": 0.20118343195266272,
|
| 260 |
+
"grad_norm": 0.45352123274250616,
|
| 261 |
+
"learning_rate": 2.8582960899936856e-06,
|
| 262 |
+
"loss": 1.9577,
|
| 263 |
+
"step": 34
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"epoch": 0.20118343195266272,
|
| 267 |
+
"eval_loss": 2.0715060234069824,
|
| 268 |
+
"eval_runtime": 197.0,
|
| 269 |
+
"eval_samples_per_second": 0.939,
|
| 270 |
+
"eval_steps_per_second": 0.081,
|
| 271 |
+
"step": 34
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"epoch": 0.20710059171597633,
|
| 275 |
+
"grad_norm": 0.4510223377290317,
|
| 276 |
+
"learning_rate": 2.8474440866680067e-06,
|
| 277 |
+
"loss": 2.0594,
|
| 278 |
+
"step": 35
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.21301775147928995,
|
| 282 |
+
"grad_norm": 0.4442729791530693,
|
| 283 |
+
"learning_rate": 2.8362218301147995e-06,
|
| 284 |
+
"loss": 2.0619,
|
| 285 |
+
"step": 36
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.21893491124260356,
|
| 289 |
+
"grad_norm": 0.47998679017895923,
|
| 290 |
+
"learning_rate": 2.824633593152181e-06,
|
| 291 |
+
"loss": 2.1122,
|
| 292 |
+
"step": 37
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"epoch": 0.22485207100591717,
|
| 296 |
+
"grad_norm": 0.6162112942853689,
|
| 297 |
+
"learning_rate": 2.8126837879434773e-06,
|
| 298 |
+
"loss": 1.8633,
|
| 299 |
+
"step": 38
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"epoch": 0.23076923076923078,
|
| 303 |
+
"grad_norm": 0.41576398758319444,
|
| 304 |
+
"learning_rate": 2.8003769643173186e-06,
|
| 305 |
+
"loss": 2.0621,
|
| 306 |
+
"step": 39
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 0.23668639053254437,
|
| 310 |
+
"grad_norm": 0.39062911846365234,
|
| 311 |
+
"learning_rate": 2.7877178080353143e-06,
|
| 312 |
+
"loss": 2.1515,
|
| 313 |
+
"step": 40
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"epoch": 0.24260355029585798,
|
| 317 |
+
"grad_norm": 0.3203731890471317,
|
| 318 |
+
"learning_rate": 2.7747111390079716e-06,
|
| 319 |
+
"loss": 2.1345,
|
| 320 |
+
"step": 41
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.2485207100591716,
|
| 324 |
+
"grad_norm": 0.3736515378297021,
|
| 325 |
+
"learning_rate": 2.7613619094595384e-06,
|
| 326 |
+
"loss": 2.0328,
|
| 327 |
+
"step": 42
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.25443786982248523,
|
| 331 |
+
"grad_norm": 0.3652931120099813,
|
| 332 |
+
"learning_rate": 2.7476752020424724e-06,
|
| 333 |
+
"loss": 2.1758,
|
| 334 |
+
"step": 43
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"epoch": 0.2603550295857988,
|
| 338 |
+
"grad_norm": 0.5017055557620015,
|
| 339 |
+
"learning_rate": 2.7336562279022408e-06,
|
| 340 |
+
"loss": 1.931,
|
| 341 |
+
"step": 44
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"epoch": 0.26627218934911245,
|
| 345 |
+
"grad_norm": 0.4301135712170236,
|
| 346 |
+
"learning_rate": 2.719310324693207e-06,
|
| 347 |
+
"loss": 2.0955,
|
| 348 |
+
"step": 45
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"epoch": 0.27218934911242604,
|
| 352 |
+
"grad_norm": 0.3238684774961103,
|
| 353 |
+
"learning_rate": 2.7046429545463427e-06,
|
| 354 |
+
"loss": 2.1779,
|
| 355 |
+
"step": 46
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"epoch": 0.2781065088757396,
|
| 359 |
+
"grad_norm": 0.4294422570883719,
|
| 360 |
+
"learning_rate": 2.689659701989552e-06,
|
| 361 |
+
"loss": 2.1401,
|
| 362 |
+
"step": 47
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.28402366863905326,
|
| 366 |
+
"grad_norm": 0.4013075492659738,
|
| 367 |
+
"learning_rate": 2.6743662718213877e-06,
|
| 368 |
+
"loss": 2.0659,
|
| 369 |
+
"step": 48
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"epoch": 0.28994082840236685,
|
| 373 |
+
"grad_norm": 0.38070293237873504,
|
| 374 |
+
"learning_rate": 2.658768486938977e-06,
|
| 375 |
+
"loss": 2.0451,
|
| 376 |
+
"step": 49
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"epoch": 0.2958579881656805,
|
| 380 |
+
"grad_norm": 0.5883048349438712,
|
| 381 |
+
"learning_rate": 2.642872286120986e-06,
|
| 382 |
+
"loss": 1.6926,
|
| 383 |
+
"step": 50
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"epoch": 0.30177514792899407,
|
| 387 |
+
"grad_norm": 0.3674848173159696,
|
| 388 |
+
"learning_rate": 2.6266837217664563e-06,
|
| 389 |
+
"loss": 2.0438,
|
| 390 |
+
"step": 51
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"epoch": 0.30177514792899407,
|
| 394 |
+
"eval_loss": 2.0649750232696533,
|
| 395 |
+
"eval_runtime": 197.0473,
|
| 396 |
+
"eval_samples_per_second": 0.939,
|
| 397 |
+
"eval_steps_per_second": 0.081,
|
| 398 |
+
"step": 51
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"epoch": 0.3076923076923077,
|
| 402 |
+
"grad_norm": 0.3855104418508937,
|
| 403 |
+
"learning_rate": 2.6102089575903843e-06,
|
| 404 |
+
"loss": 1.9911,
|
| 405 |
+
"step": 52
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"epoch": 0.3136094674556213,
|
| 409 |
+
"grad_norm": 0.3277096398159887,
|
| 410 |
+
"learning_rate": 2.5934542662769215e-06,
|
| 411 |
+
"loss": 2.0673,
|
| 412 |
+
"step": 53
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"epoch": 0.31952662721893493,
|
| 416 |
+
"grad_norm": 0.2710467788777273,
|
| 417 |
+
"learning_rate": 2.5764260270910756e-06,
|
| 418 |
+
"loss": 2.1808,
|
| 419 |
+
"step": 54
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"epoch": 0.3254437869822485,
|
| 423 |
+
"grad_norm": 0.34338292531552644,
|
| 424 |
+
"learning_rate": 2.559130723449841e-06,
|
| 425 |
+
"loss": 2.1452,
|
| 426 |
+
"step": 55
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"epoch": 0.33136094674556216,
|
| 430 |
+
"grad_norm": 0.3886306481682962,
|
| 431 |
+
"learning_rate": 2.5415749404536692e-06,
|
| 432 |
+
"loss": 2.0926,
|
| 433 |
+
"step": 56
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"epoch": 0.33727810650887574,
|
| 437 |
+
"grad_norm": 0.5452588522983003,
|
| 438 |
+
"learning_rate": 2.5237653623792258e-06,
|
| 439 |
+
"loss": 2.0391,
|
| 440 |
+
"step": 57
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 0.3431952662721893,
|
| 444 |
+
"grad_norm": 0.2748571757395172,
|
| 445 |
+
"learning_rate": 2.5057087701343825e-06,
|
| 446 |
+
"loss": 2.108,
|
| 447 |
+
"step": 58
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"epoch": 0.34911242603550297,
|
| 451 |
+
"grad_norm": 0.35785257549325855,
|
| 452 |
+
"learning_rate": 2.4874120386764222e-06,
|
| 453 |
+
"loss": 2.1324,
|
| 454 |
+
"step": 59
|
| 455 |
+
},
|
| 456 |
+
{
|
| 457 |
+
"epoch": 0.35502958579881655,
|
| 458 |
+
"grad_norm": 0.34659803845552295,
|
| 459 |
+
"learning_rate": 2.4688821343944365e-06,
|
| 460 |
+
"loss": 2.0996,
|
| 461 |
+
"step": 60
|
| 462 |
+
},
|
| 463 |
+
{
|
| 464 |
+
"epoch": 0.3609467455621302,
|
| 465 |
+
"grad_norm": 0.47823113552366736,
|
| 466 |
+
"learning_rate": 2.4501261124569018e-06,
|
| 467 |
+
"loss": 1.9417,
|
| 468 |
+
"step": 61
|
| 469 |
+
},
|
| 470 |
+
{
|
| 471 |
+
"epoch": 0.3668639053254438,
|
| 472 |
+
"grad_norm": 0.3886628781847926,
|
| 473 |
+
"learning_rate": 2.431151114125462e-06,
|
| 474 |
+
"loss": 2.0717,
|
| 475 |
+
"step": 62
|
| 476 |
+
},
|
| 477 |
+
{
|
| 478 |
+
"epoch": 0.3727810650887574,
|
| 479 |
+
"grad_norm": 0.41637337375433764,
|
| 480 |
+
"learning_rate": 2.411964364035932e-06,
|
| 481 |
+
"loss": 2.0472,
|
| 482 |
+
"step": 63
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 0.378698224852071,
|
| 486 |
+
"grad_norm": 0.4644842201042378,
|
| 487 |
+
"learning_rate": 2.3925731674475463e-06,
|
| 488 |
+
"loss": 1.9156,
|
| 489 |
+
"step": 64
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"epoch": 0.38461538461538464,
|
| 493 |
+
"grad_norm": 0.34299640828041933,
|
| 494 |
+
"learning_rate": 2.3729849074615258e-06,
|
| 495 |
+
"loss": 2.0973,
|
| 496 |
+
"step": 65
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"epoch": 0.3905325443786982,
|
| 500 |
+
"grad_norm": 0.465534798859227,
|
| 501 |
+
"learning_rate": 2.3532070422099952e-06,
|
| 502 |
+
"loss": 2.0175,
|
| 503 |
+
"step": 66
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"epoch": 0.39644970414201186,
|
| 507 |
+
"grad_norm": 0.38388811243306536,
|
| 508 |
+
"learning_rate": 2.333247102016334e-06,
|
| 509 |
+
"loss": 2.2457,
|
| 510 |
+
"step": 67
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"epoch": 0.40236686390532544,
|
| 514 |
+
"grad_norm": 0.4119153295734741,
|
| 515 |
+
"learning_rate": 2.31311268652805e-06,
|
| 516 |
+
"loss": 1.9935,
|
| 517 |
+
"step": 68
|
| 518 |
+
},
|
| 519 |
+
{
|
| 520 |
+
"epoch": 0.40236686390532544,
|
| 521 |
+
"eval_loss": 2.0609700679779053,
|
| 522 |
+
"eval_runtime": 197.0317,
|
| 523 |
+
"eval_samples_per_second": 0.939,
|
| 524 |
+
"eval_steps_per_second": 0.081,
|
| 525 |
+
"step": 68
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.40828402366863903,
|
| 529 |
+
"grad_norm": 0.2600987199979094,
|
| 530 |
+
"learning_rate": 2.292811461823245e-06,
|
| 531 |
+
"loss": 2.1588,
|
| 532 |
+
"step": 69
|
| 533 |
+
},
|
| 534 |
+
{
|
| 535 |
+
"epoch": 0.41420118343195267,
|
| 536 |
+
"grad_norm": 0.35184712345028246,
|
| 537 |
+
"learning_rate": 2.2723511574917977e-06,
|
| 538 |
+
"loss": 2.1939,
|
| 539 |
+
"step": 70
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 0.42011834319526625,
|
| 543 |
+
"grad_norm": 0.3287296450199714,
|
| 544 |
+
"learning_rate": 2.2517395636923592e-06,
|
| 545 |
+
"loss": 2.2062,
|
| 546 |
+
"step": 71
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 0.4260355029585799,
|
| 550 |
+
"grad_norm": 0.4366762426991315,
|
| 551 |
+
"learning_rate": 2.230984528186291e-06,
|
| 552 |
+
"loss": 2.2086,
|
| 553 |
+
"step": 72
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"epoch": 0.4319526627218935,
|
| 557 |
+
"grad_norm": 0.40210740908304027,
|
| 558 |
+
"learning_rate": 2.2100939533496664e-06,
|
| 559 |
+
"loss": 2.0549,
|
| 560 |
+
"step": 73
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 0.4378698224852071,
|
| 564 |
+
"grad_norm": 0.35537547070081377,
|
| 565 |
+
"learning_rate": 2.1890757931644816e-06,
|
| 566 |
+
"loss": 2.0266,
|
| 567 |
+
"step": 74
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"epoch": 0.4437869822485207,
|
| 571 |
+
"grad_norm": 0.48889944051944084,
|
| 572 |
+
"learning_rate": 2.1679380501902175e-06,
|
| 573 |
+
"loss": 2.1634,
|
| 574 |
+
"step": 75
|
| 575 |
+
},
|
| 576 |
+
{
|
| 577 |
+
"epoch": 0.44970414201183434,
|
| 578 |
+
"grad_norm": 0.43673725907480276,
|
| 579 |
+
"learning_rate": 2.1466887725169053e-06,
|
| 580 |
+
"loss": 2.1562,
|
| 581 |
+
"step": 76
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"epoch": 0.4556213017751479,
|
| 585 |
+
"grad_norm": 0.4464354735845316,
|
| 586 |
+
"learning_rate": 2.1253360507008536e-06,
|
| 587 |
+
"loss": 2.0489,
|
| 588 |
+
"step": 77
|
| 589 |
+
},
|
| 590 |
+
{
|
| 591 |
+
"epoch": 0.46153846153846156,
|
| 592 |
+
"grad_norm": 0.551735341467971,
|
| 593 |
+
"learning_rate": 2.103888014684213e-06,
|
| 594 |
+
"loss": 1.9353,
|
| 595 |
+
"step": 78
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"epoch": 0.46745562130177515,
|
| 599 |
+
"grad_norm": 0.3391884892526875,
|
| 600 |
+
"learning_rate": 2.0823528306995395e-06,
|
| 601 |
+
"loss": 2.1243,
|
| 602 |
+
"step": 79
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 0.47337278106508873,
|
| 606 |
+
"grad_norm": 0.49953528831796856,
|
| 607 |
+
"learning_rate": 2.060738698160541e-06,
|
| 608 |
+
"loss": 2.0935,
|
| 609 |
+
"step": 80
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"epoch": 0.47928994082840237,
|
| 613 |
+
"grad_norm": 0.30540893712680506,
|
| 614 |
+
"learning_rate": 2.0390538465401963e-06,
|
| 615 |
+
"loss": 2.157,
|
| 616 |
+
"step": 81
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"epoch": 0.48520710059171596,
|
| 620 |
+
"grad_norm": 0.4160329675240926,
|
| 621 |
+
"learning_rate": 2.0173065322374184e-06,
|
| 622 |
+
"loss": 2.0091,
|
| 623 |
+
"step": 82
|
| 624 |
+
},
|
| 625 |
+
{
|
| 626 |
+
"epoch": 0.4911242603550296,
|
| 627 |
+
"grad_norm": 0.45938737991716166,
|
| 628 |
+
"learning_rate": 1.995505035433475e-06,
|
| 629 |
+
"loss": 1.9679,
|
| 630 |
+
"step": 83
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"epoch": 0.4970414201183432,
|
| 634 |
+
"grad_norm": 0.44098477928990076,
|
| 635 |
+
"learning_rate": 1.9736576569393506e-06,
|
| 636 |
+
"loss": 1.9118,
|
| 637 |
+
"step": 84
|
| 638 |
+
},
|
| 639 |
+
{
|
| 640 |
+
"epoch": 0.5029585798816568,
|
| 641 |
+
"grad_norm": 0.36166230095649654,
|
| 642 |
+
"learning_rate": 1.951772715035255e-06,
|
| 643 |
+
"loss": 2.0261,
|
| 644 |
+
"step": 85
|
| 645 |
+
},
|
| 646 |
+
{
|
| 647 |
+
"epoch": 0.5029585798816568,
|
| 648 |
+
"eval_loss": 2.0585973262786865,
|
| 649 |
+
"eval_runtime": 197.2952,
|
| 650 |
+
"eval_samples_per_second": 0.938,
|
| 651 |
+
"eval_steps_per_second": 0.081,
|
| 652 |
+
"step": 85
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"epoch": 0.5088757396449705,
|
| 656 |
+
"grad_norm": 0.37736250654116943,
|
| 657 |
+
"learning_rate": 1.9298585423034768e-06,
|
| 658 |
+
"loss": 2.0185,
|
| 659 |
+
"step": 86
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"epoch": 0.514792899408284,
|
| 663 |
+
"grad_norm": 0.5083423760461777,
|
| 664 |
+
"learning_rate": 1.9079234824557984e-06,
|
| 665 |
+
"loss": 2.0253,
|
| 666 |
+
"step": 87
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"epoch": 0.5207100591715976,
|
| 670 |
+
"grad_norm": 0.36488400826084927,
|
| 671 |
+
"learning_rate": 1.8859758871566654e-06,
|
| 672 |
+
"loss": 2.2593,
|
| 673 |
+
"step": 88
|
| 674 |
+
},
|
| 675 |
+
{
|
| 676 |
+
"epoch": 0.5266272189349113,
|
| 677 |
+
"grad_norm": 0.33659295246372684,
|
| 678 |
+
"learning_rate": 1.8640241128433347e-06,
|
| 679 |
+
"loss": 2.1716,
|
| 680 |
+
"step": 89
|
| 681 |
+
},
|
| 682 |
+
{
|
| 683 |
+
"epoch": 0.5325443786982249,
|
| 684 |
+
"grad_norm": 0.40471742900044827,
|
| 685 |
+
"learning_rate": 1.8420765175442019e-06,
|
| 686 |
+
"loss": 2.1536,
|
| 687 |
+
"step": 90
|
| 688 |
+
},
|
| 689 |
+
{
|
| 690 |
+
"epoch": 0.5384615384615384,
|
| 691 |
+
"grad_norm": 0.3965904151678124,
|
| 692 |
+
"learning_rate": 1.8201414576965231e-06,
|
| 693 |
+
"loss": 2.1851,
|
| 694 |
+
"step": 91
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"epoch": 0.5443786982248521,
|
| 698 |
+
"grad_norm": 0.427430137656633,
|
| 699 |
+
"learning_rate": 1.7982272849647454e-06,
|
| 700 |
+
"loss": 2.0576,
|
| 701 |
+
"step": 92
|
| 702 |
+
},
|
| 703 |
+
{
|
| 704 |
+
"epoch": 0.5502958579881657,
|
| 705 |
+
"grad_norm": 0.4309059134194876,
|
| 706 |
+
"learning_rate": 1.7763423430606493e-06,
|
| 707 |
+
"loss": 2.0851,
|
| 708 |
+
"step": 93
|
| 709 |
+
},
|
| 710 |
+
{
|
| 711 |
+
"epoch": 0.5562130177514792,
|
| 712 |
+
"grad_norm": 0.31370304680938815,
|
| 713 |
+
"learning_rate": 1.7544949645665255e-06,
|
| 714 |
+
"loss": 2.1916,
|
| 715 |
+
"step": 94
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"epoch": 0.5621301775147929,
|
| 719 |
+
"grad_norm": 0.44355132968935695,
|
| 720 |
+
"learning_rate": 1.7326934677625821e-06,
|
| 721 |
+
"loss": 2.0184,
|
| 722 |
+
"step": 95
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 0.5680473372781065,
|
| 726 |
+
"grad_norm": 0.3507027787266398,
|
| 727 |
+
"learning_rate": 1.7109461534598034e-06,
|
| 728 |
+
"loss": 1.9014,
|
| 729 |
+
"step": 96
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"epoch": 0.5739644970414202,
|
| 733 |
+
"grad_norm": 0.35023248910125193,
|
| 734 |
+
"learning_rate": 1.6892613018394585e-06,
|
| 735 |
+
"loss": 2.1613,
|
| 736 |
+
"step": 97
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"epoch": 0.5798816568047337,
|
| 740 |
+
"grad_norm": 0.3544702327033375,
|
| 741 |
+
"learning_rate": 1.667647169300461e-06,
|
| 742 |
+
"loss": 2.0655,
|
| 743 |
+
"step": 98
|
| 744 |
+
},
|
| 745 |
+
{
|
| 746 |
+
"epoch": 0.5857988165680473,
|
| 747 |
+
"grad_norm": 0.3190768281309395,
|
| 748 |
+
"learning_rate": 1.6461119853157872e-06,
|
| 749 |
+
"loss": 2.0558,
|
| 750 |
+
"step": 99
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"epoch": 0.591715976331361,
|
| 754 |
+
"grad_norm": 0.332044027634356,
|
| 755 |
+
"learning_rate": 1.6246639492991465e-06,
|
| 756 |
+
"loss": 2.0473,
|
| 757 |
+
"step": 100
|
| 758 |
+
},
|
| 759 |
+
{
|
| 760 |
+
"epoch": 0.5976331360946746,
|
| 761 |
+
"grad_norm": 0.4381431696124247,
|
| 762 |
+
"learning_rate": 1.6033112274830948e-06,
|
| 763 |
+
"loss": 2.069,
|
| 764 |
+
"step": 101
|
| 765 |
+
},
|
| 766 |
+
{
|
| 767 |
+
"epoch": 0.6035502958579881,
|
| 768 |
+
"grad_norm": 0.3442118002969128,
|
| 769 |
+
"learning_rate": 1.5820619498097823e-06,
|
| 770 |
+
"loss": 2.1091,
|
| 771 |
+
"step": 102
|
| 772 |
+
},
|
| 773 |
+
{
|
| 774 |
+
"epoch": 0.6035502958579881,
|
| 775 |
+
"eval_loss": 2.0571818351745605,
|
| 776 |
+
"eval_runtime": 197.484,
|
| 777 |
+
"eval_samples_per_second": 0.937,
|
| 778 |
+
"eval_steps_per_second": 0.081,
|
| 779 |
+
"step": 102
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.6094674556213018,
|
| 783 |
+
"grad_norm": 0.38322580626320313,
|
| 784 |
+
"learning_rate": 1.5609242068355187e-06,
|
| 785 |
+
"loss": 2.0131,
|
| 786 |
+
"step": 103
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.6153846153846154,
|
| 790 |
+
"grad_norm": 0.320919726210023,
|
| 791 |
+
"learning_rate": 1.539906046650334e-06,
|
| 792 |
+
"loss": 2.0862,
|
| 793 |
+
"step": 104
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.621301775147929,
|
| 797 |
+
"grad_norm": 0.33990726724651393,
|
| 798 |
+
"learning_rate": 1.519015471813709e-06,
|
| 799 |
+
"loss": 2.2082,
|
| 800 |
+
"step": 105
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.6272189349112426,
|
| 804 |
+
"grad_norm": 0.3293962254034366,
|
| 805 |
+
"learning_rate": 1.4982604363076406e-06,
|
| 806 |
+
"loss": 2.2581,
|
| 807 |
+
"step": 106
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.6331360946745562,
|
| 811 |
+
"grad_norm": 0.3296440018497174,
|
| 812 |
+
"learning_rate": 1.4776488425082022e-06,
|
| 813 |
+
"loss": 2.1717,
|
| 814 |
+
"step": 107
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.6390532544378699,
|
| 818 |
+
"grad_norm": 0.39729249501674174,
|
| 819 |
+
"learning_rate": 1.4571885381767552e-06,
|
| 820 |
+
"loss": 2.1594,
|
| 821 |
+
"step": 108
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.6449704142011834,
|
| 825 |
+
"grad_norm": 0.39211215538915173,
|
| 826 |
+
"learning_rate": 1.4368873134719502e-06,
|
| 827 |
+
"loss": 1.9043,
|
| 828 |
+
"step": 109
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.650887573964497,
|
| 832 |
+
"grad_norm": 0.40567310249296884,
|
| 833 |
+
"learning_rate": 1.416752897983666e-06,
|
| 834 |
+
"loss": 2.1102,
|
| 835 |
+
"step": 110
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.6568047337278107,
|
| 839 |
+
"grad_norm": 0.36338277248170253,
|
| 840 |
+
"learning_rate": 1.3967929577900053e-06,
|
| 841 |
+
"loss": 1.9978,
|
| 842 |
+
"step": 111
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.6627218934911243,
|
| 846 |
+
"grad_norm": 0.37583876418520656,
|
| 847 |
+
"learning_rate": 1.377015092538474e-06,
|
| 848 |
+
"loss": 1.9507,
|
| 849 |
+
"step": 112
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.6686390532544378,
|
| 853 |
+
"grad_norm": 0.29975901286833806,
|
| 854 |
+
"learning_rate": 1.3574268325524538e-06,
|
| 855 |
+
"loss": 2.1545,
|
| 856 |
+
"step": 113
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.6745562130177515,
|
| 860 |
+
"grad_norm": 0.2961136115233122,
|
| 861 |
+
"learning_rate": 1.3380356359640687e-06,
|
| 862 |
+
"loss": 2.1928,
|
| 863 |
+
"step": 114
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.6804733727810651,
|
| 867 |
+
"grad_norm": 0.4503063977803398,
|
| 868 |
+
"learning_rate": 1.3188488858745378e-06,
|
| 869 |
+
"loss": 2.0015,
|
| 870 |
+
"step": 115
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.6863905325443787,
|
| 874 |
+
"grad_norm": 0.5462004147529383,
|
| 875 |
+
"learning_rate": 1.2998738875430985e-06,
|
| 876 |
+
"loss": 1.8975,
|
| 877 |
+
"step": 116
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.6923076923076923,
|
| 881 |
+
"grad_norm": 0.6036460598258993,
|
| 882 |
+
"learning_rate": 1.2811178656055636e-06,
|
| 883 |
+
"loss": 1.7253,
|
| 884 |
+
"step": 117
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.6982248520710059,
|
| 888 |
+
"grad_norm": 0.5229175578330094,
|
| 889 |
+
"learning_rate": 1.2625879613235779e-06,
|
| 890 |
+
"loss": 1.794,
|
| 891 |
+
"step": 118
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.7041420118343196,
|
| 895 |
+
"grad_norm": 0.36458617974932406,
|
| 896 |
+
"learning_rate": 1.244291229865618e-06,
|
| 897 |
+
"loss": 1.9768,
|
| 898 |
+
"step": 119
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.7041420118343196,
|
| 902 |
+
"eval_loss": 2.056403636932373,
|
| 903 |
+
"eval_runtime": 197.7669,
|
| 904 |
+
"eval_samples_per_second": 0.935,
|
| 905 |
+
"eval_steps_per_second": 0.081,
|
| 906 |
+
"step": 119
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.7100591715976331,
|
| 910 |
+
"grad_norm": 0.4889209533835279,
|
| 911 |
+
"learning_rate": 1.2262346376207745e-06,
|
| 912 |
+
"loss": 2.0582,
|
| 913 |
+
"step": 120
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.7159763313609467,
|
| 917 |
+
"grad_norm": 0.2889788829772602,
|
| 918 |
+
"learning_rate": 1.2084250595463308e-06,
|
| 919 |
+
"loss": 2.1367,
|
| 920 |
+
"step": 121
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.7218934911242604,
|
| 924 |
+
"grad_norm": 0.4302221545440225,
|
| 925 |
+
"learning_rate": 1.1908692765501592e-06,
|
| 926 |
+
"loss": 1.9656,
|
| 927 |
+
"step": 122
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.727810650887574,
|
| 931 |
+
"grad_norm": 0.35581945155759426,
|
| 932 |
+
"learning_rate": 1.173573972908925e-06,
|
| 933 |
+
"loss": 2.0071,
|
| 934 |
+
"step": 123
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.7337278106508875,
|
| 938 |
+
"grad_norm": 0.4349692224614605,
|
| 939 |
+
"learning_rate": 1.156545733723079e-06,
|
| 940 |
+
"loss": 2.0014,
|
| 941 |
+
"step": 124
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.7396449704142012,
|
| 945 |
+
"grad_norm": 0.3437659822805173,
|
| 946 |
+
"learning_rate": 1.1397910424096156e-06,
|
| 947 |
+
"loss": 2.1156,
|
| 948 |
+
"step": 125
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.7455621301775148,
|
| 952 |
+
"grad_norm": 0.40904283800990143,
|
| 953 |
+
"learning_rate": 1.1233162782335444e-06,
|
| 954 |
+
"loss": 2.1074,
|
| 955 |
+
"step": 126
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.7514792899408284,
|
| 959 |
+
"grad_norm": 0.47991420528393985,
|
| 960 |
+
"learning_rate": 1.1071277138790144e-06,
|
| 961 |
+
"loss": 1.9586,
|
| 962 |
+
"step": 127
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.757396449704142,
|
| 966 |
+
"grad_norm": 0.4307041452491789,
|
| 967 |
+
"learning_rate": 1.0912315130610233e-06,
|
| 968 |
+
"loss": 2.1032,
|
| 969 |
+
"step": 128
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.7633136094674556,
|
| 973 |
+
"grad_norm": 0.3114188877431307,
|
| 974 |
+
"learning_rate": 1.0756337281786124e-06,
|
| 975 |
+
"loss": 2.0598,
|
| 976 |
+
"step": 129
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.7692307692307693,
|
| 980 |
+
"grad_norm": 0.36225738130219465,
|
| 981 |
+
"learning_rate": 1.060340298010448e-06,
|
| 982 |
+
"loss": 2.0007,
|
| 983 |
+
"step": 130
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.7751479289940828,
|
| 987 |
+
"grad_norm": 0.3058543816876523,
|
| 988 |
+
"learning_rate": 1.0453570454536576e-06,
|
| 989 |
+
"loss": 2.1337,
|
| 990 |
+
"step": 131
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.7810650887573964,
|
| 994 |
+
"grad_norm": 0.4514038046647418,
|
| 995 |
+
"learning_rate": 1.0306896753067935e-06,
|
| 996 |
+
"loss": 1.7684,
|
| 997 |
+
"step": 132
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.7869822485207101,
|
| 1001 |
+
"grad_norm": 0.33881079311892265,
|
| 1002 |
+
"learning_rate": 1.0163437720977595e-06,
|
| 1003 |
+
"loss": 2.023,
|
| 1004 |
+
"step": 133
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.7928994082840237,
|
| 1008 |
+
"grad_norm": 0.36748821075070165,
|
| 1009 |
+
"learning_rate": 1.0023247979575275e-06,
|
| 1010 |
+
"loss": 2.0969,
|
| 1011 |
+
"step": 134
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.7988165680473372,
|
| 1015 |
+
"grad_norm": 0.3680494379442148,
|
| 1016 |
+
"learning_rate": 9.886380905404615e-07,
|
| 1017 |
+
"loss": 2.0919,
|
| 1018 |
+
"step": 135
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.8047337278106509,
|
| 1022 |
+
"grad_norm": 0.36745637991739233,
|
| 1023 |
+
"learning_rate": 9.75288860992029e-07,
|
| 1024 |
+
"loss": 2.149,
|
| 1025 |
+
"step": 136
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.8047337278106509,
|
| 1029 |
+
"eval_loss": 2.055842399597168,
|
| 1030 |
+
"eval_runtime": 198.2767,
|
| 1031 |
+
"eval_samples_per_second": 0.933,
|
| 1032 |
+
"eval_steps_per_second": 0.081,
|
| 1033 |
+
"step": 136
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"epoch": 0.8106508875739645,
|
| 1037 |
+
"grad_norm": 0.4516985518699513,
|
| 1038 |
+
"learning_rate": 9.62282191964686e-07,
|
| 1039 |
+
"loss": 2.0051,
|
| 1040 |
+
"step": 137
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.8165680473372781,
|
| 1044 |
+
"grad_norm": 0.4241561010305517,
|
| 1045 |
+
"learning_rate": 9.496230356826816e-07,
|
| 1046 |
+
"loss": 2.0454,
|
| 1047 |
+
"step": 138
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.8224852071005917,
|
| 1051 |
+
"grad_norm": 0.35268203661515457,
|
| 1052 |
+
"learning_rate": 9.373162120565227e-07,
|
| 1053 |
+
"loss": 2.1126,
|
| 1054 |
+
"step": 139
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.8284023668639053,
|
| 1058 |
+
"grad_norm": 0.41806079485106246,
|
| 1059 |
+
"learning_rate": 9.253664068478191e-07,
|
| 1060 |
+
"loss": 2.078,
|
| 1061 |
+
"step": 140
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"epoch": 0.834319526627219,
|
| 1065 |
+
"grad_norm": 0.520280194503135,
|
| 1066 |
+
"learning_rate": 9.137781698852005e-07,
|
| 1067 |
+
"loss": 2.0028,
|
| 1068 |
+
"step": 141
|
| 1069 |
+
},
|
| 1070 |
+
{
|
| 1071 |
+
"epoch": 0.8402366863905325,
|
| 1072 |
+
"grad_norm": 0.4306449164932711,
|
| 1073 |
+
"learning_rate": 9.025559133319939e-07,
|
| 1074 |
+
"loss": 1.9961,
|
| 1075 |
+
"step": 142
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"epoch": 0.8461538461538461,
|
| 1079 |
+
"grad_norm": 0.7185081383654739,
|
| 1080 |
+
"learning_rate": 8.917039100063143e-07,
|
| 1081 |
+
"loss": 1.9954,
|
| 1082 |
+
"step": 143
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 0.8520710059171598,
|
| 1086 |
+
"grad_norm": 0.4261564524540679,
|
| 1087 |
+
"learning_rate": 8.812262917542094e-07,
|
| 1088 |
+
"loss": 2.0213,
|
| 1089 |
+
"step": 144
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 0.8579881656804734,
|
| 1093 |
+
"grad_norm": 0.35117801817322697,
|
| 1094 |
+
"learning_rate": 8.711270478764811e-07,
|
| 1095 |
+
"loss": 1.9992,
|
| 1096 |
+
"step": 145
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"epoch": 0.863905325443787,
|
| 1100 |
+
"grad_norm": 0.3355379801047803,
|
| 1101 |
+
"learning_rate": 8.614100236097786e-07,
|
| 1102 |
+
"loss": 1.9944,
|
| 1103 |
+
"step": 146
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"epoch": 0.8698224852071006,
|
| 1107 |
+
"grad_norm": 0.3554896701673393,
|
| 1108 |
+
"learning_rate": 8.520789186625437e-07,
|
| 1109 |
+
"loss": 2.0622,
|
| 1110 |
+
"step": 147
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"epoch": 0.8757396449704142,
|
| 1114 |
+
"grad_norm": 0.4231747268502637,
|
| 1115 |
+
"learning_rate": 8.431372858063655e-07,
|
| 1116 |
+
"loss": 1.9006,
|
| 1117 |
+
"step": 148
|
| 1118 |
+
},
|
| 1119 |
+
{
|
| 1120 |
+
"epoch": 0.8816568047337278,
|
| 1121 |
+
"grad_norm": 0.42535619101097,
|
| 1122 |
+
"learning_rate": 8.345885295232802e-07,
|
| 1123 |
+
"loss": 2.0719,
|
| 1124 |
+
"step": 149
|
| 1125 |
+
},
|
| 1126 |
+
{
|
| 1127 |
+
"epoch": 0.8875739644970414,
|
| 1128 |
+
"grad_norm": 0.6277732187271408,
|
| 1129 |
+
"learning_rate": 8.264359047095321e-07,
|
| 1130 |
+
"loss": 2.1649,
|
| 1131 |
+
"step": 150
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 0.893491124260355,
|
| 1135 |
+
"grad_norm": 0.3395676759339747,
|
| 1136 |
+
"learning_rate": 8.18682515436287e-07,
|
| 1137 |
+
"loss": 1.9553,
|
| 1138 |
+
"step": 151
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 0.8994082840236687,
|
| 1142 |
+
"grad_norm": 0.3255756917307362,
|
| 1143 |
+
"learning_rate": 8.113313137677737e-07,
|
| 1144 |
+
"loss": 2.1432,
|
| 1145 |
+
"step": 152
|
| 1146 |
+
},
|
| 1147 |
+
{
|
| 1148 |
+
"epoch": 0.9053254437869822,
|
| 1149 |
+
"grad_norm": 0.3546025002626972,
|
| 1150 |
+
"learning_rate": 8.043850986372999e-07,
|
| 1151 |
+
"loss": 1.9458,
|
| 1152 |
+
"step": 153
|
| 1153 |
+
},
|
| 1154 |
+
{
|
| 1155 |
+
"epoch": 0.9053254437869822,
|
| 1156 |
+
"eval_loss": 2.055553436279297,
|
| 1157 |
+
"eval_runtime": 198.454,
|
| 1158 |
+
"eval_samples_per_second": 0.932,
|
| 1159 |
+
"eval_steps_per_second": 0.081,
|
| 1160 |
+
"step": 153
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"epoch": 0.9112426035502958,
|
| 1164 |
+
"grad_norm": 0.3805290831108246,
|
| 1165 |
+
"learning_rate": 7.978465147815721e-07,
|
| 1166 |
+
"loss": 2.2608,
|
| 1167 |
+
"step": 154
|
| 1168 |
+
},
|
| 1169 |
+
{
|
| 1170 |
+
"epoch": 0.9171597633136095,
|
| 1171 |
+
"grad_norm": 0.3631189463389273,
|
| 1172 |
+
"learning_rate": 7.917180517337259e-07,
|
| 1173 |
+
"loss": 2.084,
|
| 1174 |
+
"step": 155
|
| 1175 |
+
},
|
| 1176 |
+
{
|
| 1177 |
+
"epoch": 0.9230769230769231,
|
| 1178 |
+
"grad_norm": 0.367323143714555,
|
| 1179 |
+
"learning_rate": 7.860020428754477e-07,
|
| 1180 |
+
"loss": 2.1859,
|
| 1181 |
+
"step": 156
|
| 1182 |
+
},
|
| 1183 |
+
{
|
| 1184 |
+
"epoch": 0.9289940828402367,
|
| 1185 |
+
"grad_norm": 0.431420741400224,
|
| 1186 |
+
"learning_rate": 7.807006645485528e-07,
|
| 1187 |
+
"loss": 2.0085,
|
| 1188 |
+
"step": 157
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"epoch": 0.9349112426035503,
|
| 1192 |
+
"grad_norm": 0.3520993154950307,
|
| 1193 |
+
"learning_rate": 7.758159352263519e-07,
|
| 1194 |
+
"loss": 1.9591,
|
| 1195 |
+
"step": 158
|
| 1196 |
+
},
|
| 1197 |
+
{
|
| 1198 |
+
"epoch": 0.9408284023668639,
|
| 1199 |
+
"grad_norm": 0.4999371259522363,
|
| 1200 |
+
"learning_rate": 7.713497147451306e-07,
|
| 1201 |
+
"loss": 1.9551,
|
| 1202 |
+
"step": 159
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.9467455621301775,
|
| 1206 |
+
"grad_norm": 0.29568560909731995,
|
| 1207 |
+
"learning_rate": 7.673037035960225e-07,
|
| 1208 |
+
"loss": 2.2102,
|
| 1209 |
+
"step": 160
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 0.9526627218934911,
|
| 1213 |
+
"grad_norm": 0.41206656097993316,
|
| 1214 |
+
"learning_rate": 7.636794422775584e-07,
|
| 1215 |
+
"loss": 2.1114,
|
| 1216 |
+
"step": 161
|
| 1217 |
+
},
|
| 1218 |
+
{
|
| 1219 |
+
"epoch": 0.9585798816568047,
|
| 1220 |
+
"grad_norm": 0.43919655216705533,
|
| 1221 |
+
"learning_rate": 7.604783107091279e-07,
|
| 1222 |
+
"loss": 1.978,
|
| 1223 |
+
"step": 162
|
| 1224 |
+
},
|
| 1225 |
+
{
|
| 1226 |
+
"epoch": 0.9644970414201184,
|
| 1227 |
+
"grad_norm": 0.3694121289092457,
|
| 1228 |
+
"learning_rate": 7.577015277055826e-07,
|
| 1229 |
+
"loss": 1.9795,
|
| 1230 |
+
"step": 163
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"epoch": 0.9704142011834319,
|
| 1234 |
+
"grad_norm": 0.2972089830569135,
|
| 1235 |
+
"learning_rate": 7.553501505131776e-07,
|
| 1236 |
+
"loss": 2.1093,
|
| 1237 |
+
"step": 164
|
| 1238 |
+
},
|
| 1239 |
+
{
|
| 1240 |
+
"epoch": 0.9763313609467456,
|
| 1241 |
+
"grad_norm": 0.3033335245017897,
|
| 1242 |
+
"learning_rate": 7.534250744070314e-07,
|
| 1243 |
+
"loss": 2.031,
|
| 1244 |
+
"step": 165
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"epoch": 0.9822485207100592,
|
| 1248 |
+
"grad_norm": 0.5296826208782749,
|
| 1249 |
+
"learning_rate": 7.519270323502531e-07,
|
| 1250 |
+
"loss": 1.7548,
|
| 1251 |
+
"step": 166
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.9881656804733728,
|
| 1255 |
+
"grad_norm": 0.31577732762298244,
|
| 1256 |
+
"learning_rate": 7.508565947148714e-07,
|
| 1257 |
+
"loss": 2.0197,
|
| 1258 |
+
"step": 167
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 0.9940828402366864,
|
| 1262 |
+
"grad_norm": 0.305419250158058,
|
| 1263 |
+
"learning_rate": 7.502141690646682e-07,
|
| 1264 |
+
"loss": 2.2453,
|
| 1265 |
+
"step": 168
|
| 1266 |
+
},
|
| 1267 |
+
{
|
| 1268 |
+
"epoch": 1.0,
|
| 1269 |
+
"grad_norm": 0.3296352668838936,
|
| 1270 |
+
"learning_rate": 7.5e-07,
|
| 1271 |
+
"loss": 2.0452,
|
| 1272 |
+
"step": 169
|
| 1273 |
+
}
|
| 1274 |
+
],
|
| 1275 |
+
"logging_steps": 1,
|
| 1276 |
+
"max_steps": 169,
|
| 1277 |
+
"num_input_tokens_seen": 0,
|
| 1278 |
+
"num_train_epochs": 1,
|
| 1279 |
+
"save_steps": 34,
|
| 1280 |
+
"stateful_callbacks": {
|
| 1281 |
+
"TrainerControl": {
|
| 1282 |
+
"args": {
|
| 1283 |
+
"should_epoch_stop": false,
|
| 1284 |
+
"should_evaluate": false,
|
| 1285 |
+
"should_log": false,
|
| 1286 |
+
"should_save": true,
|
| 1287 |
+
"should_training_stop": true
|
| 1288 |
+
},
|
| 1289 |
+
"attributes": {}
|
| 1290 |
+
}
|
| 1291 |
+
},
|
| 1292 |
+
"total_flos": 41339395768320.0,
|
| 1293 |
+
"train_batch_size": 3,
|
| 1294 |
+
"trial_name": null,
|
| 1295 |
+
"trial_params": null
|
| 1296 |
+
}
|
checkpoint-169/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2e2e6507f387fda28def5804cc60171b78b893f677b7b6925da98471b296786
|
| 3 |
+
size 9464
|
checkpoint-169/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|