qwen3_30b_moe_eagle3 / qwen3_moe.py
Lil2J's picture
Upload 4 files
e345725 verified
raw
history blame
34.1 kB
# Adapted from qwen2_moe.py
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only Qwen3MoE model compatible with HuggingFace weights."""
import logging
from typing import Any, Dict, Iterable, Optional, Tuple, Union
import torch
from torch import nn
from sglang.srt.distributed import (
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
parallel_state,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce,
)
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.communicator import LayerCommunicator, LayerScatterModes
from sglang.srt.layers.dp_attention import (
attn_tp_all_gather,
attn_tp_reduce_scatter,
dp_gather_partial,
dp_scatter,
get_attention_tp_rank,
get_attention_tp_size,
get_local_attention_dp_size,
)
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.moe.topk import select_experts
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.utils import get_layer_id
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.expert_distribution import (
get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import (
ForwardBatch,
ForwardMode,
PPProxyTensors,
)
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2_moe import Qwen2MoeMLP as Qwen3MoeMLP
from sglang.srt.models.qwen2_moe import Qwen2MoeModel
from sglang.srt.two_batch_overlap import MaybeTboDeepEPDispatcher, model_forward_maybe_tbo, ScatterMode
from sglang.srt.utils import DeepEPMode, add_prefix, is_non_idle_and_non_empty
Qwen3MoeConfig = None
logger = logging.getLogger(__name__)
class Qwen3MoeSparseMoeBlock(nn.Module):
def __init__(
self,
layer_id: int,
config: Qwen3MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.layer_id = layer_id
if self.tp_size > config.num_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.num_experts}."
)
self.experts = get_moe_impl_class()(
num_experts=config.num_experts
+ global_server_args_dict["ep_num_redundant_experts"],
top_k=config.num_experts_per_tok,
layer_id=layer_id,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
prefix=add_prefix("experts", prefix),
**(
dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
if global_server_args_dict["enable_deepep_moe"]
else {}
),
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_experts,
bias=False,
quant_config=None,
prefix=add_prefix("gate", prefix),
)
if global_server_args_dict["enable_deepep_moe"]:
# TODO: we will support tp < ep in the future
self.ep_size = get_tensor_model_parallel_world_size()
self.num_experts = (
config.num_experts + global_server_args_dict["ep_num_redundant_experts"]
)
self.top_k = config.num_experts_per_tok
self.renormalize = config.norm_topk_prob
self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
group=parallel_state.get_tp_group().device_group,
router_topk=self.top_k,
permute_fusion=True,
num_experts=self.num_experts,
num_local_experts=config.num_experts // self.tp_size,
hidden_size=config.hidden_size,
params_dtype=config.torch_dtype,
deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
async_finish=True, # TODO
return_recv_hook=True,
)
def forward(
self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
) -> torch.Tensor:
if not global_server_args_dict["enable_deepep_moe"]:
return self.forward_normal(hidden_states)
else:
return self.forward_deepep(hidden_states, forward_batch)
def get_moe_weights(self):
return [
x.data
for name, x in self.experts.named_parameters()
if name not in ["correction_bias"]
]
def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_dim)
def forward_deepep(
self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
) -> torch.Tensor:
forward_mode = forward_batch.forward_mode
if is_non_idle_and_non_empty(forward_mode, hidden_states):
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
topk_weights, topk_idx = select_experts(
hidden_states=hidden_states,
router_logits=router_logits,
top_k=self.top_k,
use_grouped_topk=False,
renormalize=self.renormalize,
num_token_non_padded=forward_batch.num_token_non_padded,
expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
layer_id=self.layer_id,
),
)
else:
topk_idx = torch.full(
(0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
)
topk_weights = torch.empty(
(0, self.top_k), dtype=torch.float32, device=hidden_states.device
)
if self.ep_size > 1:
# TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
(
hidden_states,
topk_idx,
topk_weights,
reorder_topk_ids,
num_recv_tokens_per_expert,
seg_indptr,
masked_m,
expected_m,
) = self.deepep_dispatcher.dispatch(
hidden_states=hidden_states,
topk_idx=topk_idx,
topk_weights=topk_weights,
forward_mode=forward_mode,
)
final_hidden_states = self.experts(
hidden_states=hidden_states,
topk_idx=topk_idx,
topk_weights=topk_weights,
reorder_topk_ids=reorder_topk_ids,
seg_indptr=seg_indptr,
masked_m=masked_m,
expected_m=expected_m,
num_recv_tokens_per_expert=num_recv_tokens_per_expert,
forward_mode=forward_mode,
)
if self.ep_size > 1:
final_hidden_states = self.deepep_dispatcher.combine(
hidden_states=final_hidden_states,
topk_idx=topk_idx,
topk_weights=topk_weights,
forward_mode=forward_mode,
)
return final_hidden_states
def op_gate(self, state):
if is_non_idle_and_non_empty(
state.forward_batch.forward_mode, state.hidden_states_mlp_input
):
# router_logits: (num_tokens, n_experts)
state.router_logits, _ = self.gate(state.hidden_states_mlp_input)
else:
state.router_logits = None
def op_select_experts(self, state):
router_logits = state.pop("router_logits")
hidden_states = state.hidden_states_mlp_input
if router_logits is not None:
with get_global_expert_distribution_recorder().with_current_layer(
self.layer_id
):
state.topk_weights_local, state.topk_idx_local = select_experts(
hidden_states=hidden_states,
router_logits=router_logits,
top_k=self.top_k,
use_grouped_topk=False,
renormalize=self.renormalize,
num_token_non_padded=state.forward_batch.num_token_non_padded,
expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
layer_id=self.layer_id,
),
)
else:
state.topk_idx_local = torch.full(
(0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
)
state.topk_weights_local = torch.empty(
(0, self.top_k), dtype=torch.float32, device=hidden_states.device
)
def op_dispatch_a(self, state):
if self.ep_size > 1:
# TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
self.deepep_dispatcher.dispatch_a(
hidden_states=state.pop("hidden_states_mlp_input"),
topk_idx=state.pop("topk_idx_local"),
topk_weights=state.pop("topk_weights_local"),
forward_mode=state.forward_batch.forward_mode,
tbo_subbatch_index=state.get("tbo_subbatch_index"),
)
def op_dispatch_b(self, state):
if self.ep_size > 1:
with get_global_expert_distribution_recorder().with_current_layer(
self.layer_id
):
(
state.hidden_states_experts_input,
state.topk_idx_dispatched,
state.topk_weights_dispatched,
state.reorder_topk_ids,
state.num_recv_tokens_per_expert,
state.seg_indptr,
state.masked_m,
state.expected_m,
) = self.deepep_dispatcher.dispatch_b(
tbo_subbatch_index=state.get("tbo_subbatch_index"),
)
def op_experts(self, state):
state.hidden_states_experts_output = self.experts(
hidden_states=state.pop("hidden_states_experts_input"),
topk_idx=state.topk_idx_dispatched,
topk_weights=state.topk_weights_dispatched,
reorder_topk_ids=state.pop("reorder_topk_ids"),
seg_indptr=state.pop("seg_indptr"),
masked_m=state.pop("masked_m"),
expected_m=state.pop("expected_m"),
num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
forward_mode=state.forward_batch.forward_mode,
)
def op_combine_a(self, state):
if self.ep_size > 1:
self.deepep_dispatcher.combine_a(
hidden_states=state.pop("hidden_states_experts_output"),
topk_idx=state.pop("topk_idx_dispatched"),
topk_weights=state.pop("topk_weights_dispatched"),
forward_mode=state.forward_batch.forward_mode,
tbo_subbatch_index=state.get("tbo_subbatch_index"),
)
def op_combine_b(self, state):
if self.ep_size > 1:
state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
tbo_subbatch_index=state.get("tbo_subbatch_index"),
)
def op_output(self, state):
state.hidden_states_mlp_output = state.pop("hidden_states_after_combine")
class Qwen3MoeAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
layer_id: int = 0,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
head_dim: Optional[int] = None,
rms_norm_eps: float = 1e-06,
attention_bias: bool = False,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
attn_tp_rank = get_attention_tp_rank()
attn_tp_size = get_attention_tp_size()
self.total_num_heads = num_heads
assert self.total_num_heads % attn_tp_size == 0
self.num_heads = self.total_num_heads // attn_tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= attn_tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % attn_tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert attn_tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // attn_tp_size)
self.head_dim = head_dim or hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.tp_rank = get_tensor_model_parallel_rank()
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=attention_bias,
quant_config=quant_config,
tp_rank=attn_tp_rank,
tp_size=attn_tp_size,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=attention_bias,
quant_config=quant_config,
tp_rank=attn_tp_rank,
tp_size=attn_tp_size,
reduce_results=False,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
def _apply_qk_norm(
self, q: torch.Tensor, k: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
q_by_head = q.reshape(-1, self.head_dim)
q_by_head = self.q_norm(q_by_head)
q = q_by_head.view(q.shape)
k_by_head = k.reshape(-1, self.head_dim)
k_by_head = self.k_norm(k_by_head)
k = k_by_head.view(k.shape)
return q, k
def op_prepare(self, state):
state.attn_intermediate_state = self.forward_prepare(
positions=state.positions,
hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
forward_batch=state.forward_batch,
)
def op_core(self, state):
state.hidden_states_after_attn = self.forward_core(
state.pop("attn_intermediate_state")
)
def forward_prepare(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
):
if hidden_states.shape[0] == 0:
return hidden_states, forward_batch, None
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
inner_state = q, k, v, forward_batch
return None, forward_batch, inner_state
def forward_core(self, intermediate_state):
hidden_states, forward_batch, inner_state = intermediate_state
if inner_state is None:
return hidden_states
attn_output = self.attn(*inner_state)
output, _ = self.o_proj(attn_output)
return output
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
s = self.forward_prepare(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
return self.forward_core(s)
class Qwen3MoeDecoderLayer(nn.Module):
def __init__(
self,
config: Qwen3MoeConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
rms_norm_eps = config.rms_norm_eps
attention_bias = config.attention_bias
self.self_attn = Qwen3MoeAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
layer_id=layer_id,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
head_dim=head_dim,
rms_norm_eps=rms_norm_eps,
attention_bias=attention_bias,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
self.layer_id = layer_id
self.attn_tp_size = get_attention_tp_size()
self.attn_tp_rank = get_attention_tp_rank()
self.local_dp_size = get_local_attention_dp_size()
# Qwen3MoE all layers are sparse and have no nextn now
self.is_layer_sparse = True
is_previous_layer_sparse = True
self.layer_scatter_modes = LayerScatterModes.init_new(
layer_id=layer_id,
num_layers=config.num_hidden_layers,
is_layer_sparse=self.is_layer_sparse,
is_previous_layer_sparse=is_previous_layer_sparse,
)
if self.is_layer_sparse:
self.mlp = Qwen3MoeSparseMoeBlock(
layer_id=self.layer_id,
config=config,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
else:
self.mlp = Qwen3MoeMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.layer_communicator = LayerCommunicator(
layer_scatter_modes=self.layer_scatter_modes,
input_layernorm=self.input_layernorm,
post_attention_layernorm=self.post_attention_layernorm,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
hidden_states, residual = self.layer_communicator.prepare_attn(
hidden_states, residual, forward_batch
)
if hidden_states.shape[0] != 0:
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
hidden_states, residual = self.layer_communicator.prepare_mlp(
hidden_states, residual, forward_batch
)
hidden_states = self.mlp(hidden_states, forward_batch)
hidden_states, residual = self.layer_communicator.postprocess_layer(
hidden_states, residual, forward_batch
)
return hidden_states, residual
def op_comm_prepare_attn(
self,
state,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
tbo_subbatch_index: Optional[int] = None,
):
state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
)
state.update(
dict(
forward_batch=forward_batch,
positions=positions,
tbo_subbatch_index=tbo_subbatch_index,
)
)
def op_comm_prepare_mlp(self, state):
state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
self.layer_communicator.prepare_mlp(
state.pop("hidden_states_after_attn"),
state.pop("residual_after_input_ln"),
state.forward_batch,
)
)
def op_mlp(self, state):
hidden_states = state.pop("hidden_states_mlp_input")
state.hidden_states_mlp_output = self.mlp(
hidden_states, state.forward_batch.forward_mode
)
def op_comm_postprocess_layer(self, state):
hidden_states, residual = self.layer_communicator.postprocess_layer(
state.pop("hidden_states_mlp_output"),
state.pop("residual_after_comm_pre_mlp"),
state.forward_batch,
)
output = dict(
positions=state.positions,
hidden_states=hidden_states,
residual=residual,
forward_batch=state.forward_batch,
tbo_subbatch_index=state.tbo_subbatch_index,
)
state.clear(
expect_keys={
"positions",
"forward_batch",
"tbo_subbatch_index",
}
)
return output
class Qwen3MoeModel(Qwen2MoeModel):
def __init__(
self,
config: Qwen3MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(
config=config,
quant_config=quant_config,
prefix=prefix,
decoder_layer_type=Qwen3MoeDecoderLayer,
)
# For EAGLE3 support
self.layers_to_capture = []
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> Union[torch.Tensor, PPProxyTensors]:
if self.pp_group.is_first_rank:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
else:
assert pp_proxy_tensors is not None
hidden_states = pp_proxy_tensors["hidden_states"]
residual = pp_proxy_tensors["residual"]
# For EAGLE3 support - collect auxiliary hidden states
aux_hidden_states = []
if forward_batch.can_run_tbo:
hidden_states, residual = model_forward_maybe_tbo(
layers=self.layers,
enable_tbo=True,
input_data_scatter_mode=ScatterMode.model_input_output(),
positions=positions,
forward_batch=forward_batch,
hidden_states=hidden_states,
residual=residual,
)
else:
for i in range(self.start_layer, self.end_layer):
# EAGLE3 support: capture hidden states from specified layers
if i in self.layers_to_capture:
aux_hidden_states.append(hidden_states + residual)
with get_global_expert_distribution_recorder().with_current_layer(i):
layer = self.layers[i]
hidden_states, residual = layer(
positions, hidden_states, forward_batch, residual
)
if not self.pp_group.is_last_rank:
return PPProxyTensors(
{
"hidden_states": hidden_states,
"residual": residual,
}
)
else:
if hidden_states.shape[0] != 0:
if residual is None:
hidden_states = self.norm(hidden_states)
else:
hidden_states, _ = self.norm(hidden_states, residual)
# Return aux_hidden_states if available for EAGLE3
if len(aux_hidden_states) == 0:
return hidden_states
return hidden_states, aux_hidden_states
class Qwen3MoeForCausalLM(nn.Module):
fall_back_to_pt_during_load = False
def __init__(
self,
config: Qwen3MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.pp_group = get_pp_group()
self.config = config
self.quant_config = quant_config
self.model = Qwen3MoeModel(
config, quant_config, prefix=add_prefix("model", prefix)
)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
)
self.logits_processor = LogitsProcessor(config)
# For EAGLE3 support
self.capture_aux_hidden_states = False
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids,
positions,
forward_batch,
input_embeds,
pp_proxy_tensors=pp_proxy_tensors,
)
aux_hidden_states = None
if self.capture_aux_hidden_states:
hidden_states, aux_hidden_states = hidden_states
if self.pp_group.is_last_rank:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states
)
else:
return hidden_states
@property
def start_layer(self):
return self.model.start_layer
@property
def end_layer(self):
return self.model.end_layer
def get_embed_and_head(self):
return self.model.embed_tokens.weight, self.lm_head.weight
def set_eagle3_layers_to_capture(self):
if not self.pp_group.is_last_rank:
return
self.capture_aux_hidden_states = True
num_layers = self.config.num_hidden_layers
self.model.layers_to_capture = [2, num_layers // 2, num_layers - 3]
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
layer_id = get_layer_id(name)
if (
layer_id is not None
and hasattr(self.model, "start_layer")
and (
layer_id < self.model.start_layer
or layer_id >= self.model.end_layer
)
):
continue
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if name not in params_dict:
continue
if name in params_dict.keys():
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
else:
logger.warning(f"Parameter {name} not found in params_dict")
# TODO mimic deepseek
self.routed_experts_weights_of_layer = {
layer_id: self.model.layers[layer_id].mlp.get_moe_weights()
for layer_id in range(self.start_layer, self.end_layer)
if isinstance(self.model.layers[layer_id].mlp, Qwen3MoeSparseMoeBlock)
}
@classmethod
def get_model_config_for_expert_location(cls, config):
return ModelConfigForExpertLocation(
num_layers=config.num_hidden_layers,
num_logical_experts=config.num_experts,
num_groups=None,
)
EntryClass = Qwen3MoeForCausalLM