Tencent-Hunyuan
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!-- ## **HunyuanDiT** -->
|
| 2 |
+
<!-- [[Technical Report]()]   [[Project Page]()]   [[Model Card]()] <br>
|
| 3 |
+
|
| 4 |
+
[[🤗 Demo (Realistic)]()]   -->
|
| 5 |
+
<p align="center">
|
| 6 |
+
<img src="./asset/logo.png" height=100>
|
| 7 |
+
</p>
|
| 8 |
+
|
| 9 |
+
<div align="center" style="font-size: 30px;font-weight: bold;">Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding</div>
|
| 10 |
+
|
| 11 |
+
<div align="center">
|
| 12 |
+
<a href="https://github.com/Tencent/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Code&message=Github&color=blue&logo=github-pages"></a>  
|
| 13 |
+
<a href="https://dit.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a>  
|
| 14 |
+
<a href="https://arxiv.org/abs/"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:HunYuan-DiT&color=red&logo=arxiv"></a>  
|
| 15 |
+
<a href="https://arxiv.org/abs/2403.08857"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:DialogGen&color=red&logo=arxiv"></a>  
|
| 16 |
+
<a href="https://huggingface.co/Tencent-Hunyuan/Hunyuan-DiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT&message=HuggingFace&color=yellow"></a>  
|
| 17 |
+
|
| 18 |
+
</div>
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
<!-- ## Contents
|
| 22 |
+
* [Dependencies and Installation](#-Dependencies-and-Installation)
|
| 23 |
+
* [Inference](#-Inference)
|
| 24 |
+
* [Download Models](#-download-models)
|
| 25 |
+
|
| 26 |
+
* [Acknowledgement](#acknowledgements)
|
| 27 |
+
* [Citation](#bibtex) -->
|
| 28 |
+
|
| 29 |
+
# **Abstract**
|
| 30 |
+
|
| 31 |
+
We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
|
| 32 |
+
Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# **Hunyuan-DiT Key Features**
|
| 36 |
+
## **Chinese-English Bilingual DiT Architecture**
|
| 37 |
+
We propose HunyuanDiT, a text-to-image generation model based on Diffusion transformer with fine-grained understanding of Chinese and English. In order to build Hunyuan DiT, we carefully designed the Transformer structure, text encoder and positional encoding. We also built a complete data pipeline from scratch to update and evaluate data to help model optimization iterations. To achieve fine-grained text understanding, we train a multi-modal large language model to optimize text descriptions of images. Ultimately, Hunyuan DiT is able to conduct multiple rounds of dialogue with users, generating and improving images based on context.
|
| 38 |
+
<p align="center">
|
| 39 |
+
<img src="./asset/framework.png" height=500>
|
| 40 |
+
</p>
|
| 41 |
+
|
| 42 |
+
## **Multi-turn Text2Image Generation**
|
| 43 |
+
Understanding natural language instructions and performing multi-turn interaction with users are important for a
|
| 44 |
+
text-to-image system. It can help build a dynamic and iterative creation process that bring the user’s idea into reality
|
| 45 |
+
step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
|
| 46 |
+
conversations and image generation. We train MLLM to understand the multi-round user dialogue
|
| 47 |
+
and output the new text prompt for image generation.
|
| 48 |
+
<p align="center">
|
| 49 |
+
<img src="./asset/mllm.png" height=300>
|
| 50 |
+
</p>
|
| 51 |
+
|
| 52 |
+
## **Comparisons**
|
| 53 |
+
In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.
|
| 54 |
+
|
| 55 |
+
<p align="center">
|
| 56 |
+
<table>
|
| 57 |
+
<thead>
|
| 58 |
+
<tr>
|
| 59 |
+
<th rowspan="2">Type</th> <th rowspan="2">Model</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th>
|
| 60 |
+
</tr>
|
| 61 |
+
</thead>
|
| 62 |
+
<tbody>
|
| 63 |
+
<tr>
|
| 64 |
+
<td rowspan="3">Open Source</td>
|
| 65 |
+
<td>SDXL</td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td>
|
| 66 |
+
</tr>
|
| 67 |
+
<tr>
|
| 68 |
+
<td>Playground 2.5</td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td>
|
| 69 |
+
</tr>
|
| 70 |
+
<tr style="font-weight: bold; background-color: #f2f2f2;"> <td>Hunyuan-DiT</td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td> </tr>
|
| 71 |
+
<tr>
|
| 72 |
+
<td rowspan="3">Closed Source</td>
|
| 73 |
+
<td>SD 3</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td>
|
| 74 |
+
|
| 75 |
+
</tr>
|
| 76 |
+
<tr>
|
| 77 |
+
<td>MidJourney v6</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td>
|
| 78 |
+
</tr>
|
| 79 |
+
<tr>
|
| 80 |
+
<td>DALL-E 3</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td>
|
| 81 |
+
</tr>
|
| 82 |
+
</table>
|
| 83 |
+
</p>
|
| 84 |
+
|
| 85 |
+
## **Visualization**
|
| 86 |
+
|
| 87 |
+
* **Chinese Elements**
|
| 88 |
+
<p align="center">
|
| 89 |
+
<img src="./asset/chinese elements understanding.png" height=280>
|
| 90 |
+
</p>
|
| 91 |
+
|
| 92 |
+
* **Long Text Input**
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
<p align="center">
|
| 96 |
+
<img src="./asset/long text understanding.png" height=900>
|
| 97 |
+
<figcaption>Comparison between Hunyuan-DiT and other text-to-image models. The image with the highest resolution on the far left is the result of Hunyuan-Dit. The others, from top left to bottom right, are as follows: Dalle3, Midjourney v6, SD3, Playground 2.5, PixArt, SDXL, Baidu Yige, WanXiang.
|
| 98 |
+
</p>
|
| 99 |
+
|
| 100 |
+
* **Multi-turn Text2Image Generation**
|
| 101 |
+
<p align="center">
|
| 102 |
+
<a href="https://prc-videoframe-pub-1258344703.cos.ap-guangzhou.myqcloud.com/ad_creative_engine/projectpage/1deab38689342431e63606e01e16961c.mov">
|
| 103 |
+
<img src="./asset/cover.png" alt="Watch the video" height="800">
|
| 104 |
+
</a>
|
| 105 |
+
</p>
|
| 106 |
+
|
| 107 |
+
# **Dependencies and Installation**
|
| 108 |
+
Ensure your machine is equipped with a GPU having over 20GB of memory.
|
| 109 |
+
|
| 110 |
+
Begin by cloning the repository:
|
| 111 |
+
```bash
|
| 112 |
+
git clone https://github.com/tencent/HunyuanDiT
|
| 113 |
+
cd HunyuanDiT
|
| 114 |
+
```
|
| 115 |
+
We provide an `environment.yml` file for setting up a Conda environment.
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
Installation instructions for Conda are available [here](https://docs.anaconda.com/free/miniconda/index.html).
|
| 119 |
+
|
| 120 |
+
```shell
|
| 121 |
+
# Prepare conda environment
|
| 122 |
+
conda env create -f environment.yml
|
| 123 |
+
|
| 124 |
+
# Activate the environment
|
| 125 |
+
conda activate HunyuanDiT
|
| 126 |
+
|
| 127 |
+
# Install pip dependencies
|
| 128 |
+
python -m pip install -r requirements.txt
|
| 129 |
+
|
| 130 |
+
# Install flash attention v2 (for acceleration, requires CUDA 11.6 or above)
|
| 131 |
+
python -m pip install git+https://github.com/Dao-AILab/[email protected]
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
# **Download Models**
|
| 135 |
+
To download the model, first install the huggingface-cli. Installation instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli):
|
| 136 |
+
|
| 137 |
+
```sh
|
| 138 |
+
# Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
|
| 139 |
+
mkdir ckpts
|
| 140 |
+
# Use the huggingface-cli tool to download the model.
|
| 141 |
+
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
|
| 142 |
+
huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
|
| 143 |
+
```
|
| 144 |
+
<!-- For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT). -->
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
|
| 148 |
+
|
| 149 |
+
| Model | #Params | url|
|
| 150 |
+
|:-----------------|:--------|:--------------|
|
| 151 |
+
|mT5 | xxB | [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5)|
|
| 152 |
+
| CLIP | xxB | [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder)|
|
| 153 |
+
| DialogGen | 7B | [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen)|
|
| 154 |
+
| sdxl-vae-fp16-fix | xxB | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix)|
|
| 155 |
+
| Hunyuan-DiT | xxB | [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model)|
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# **Inference**
|
| 160 |
+
```bash
|
| 161 |
+
# prompt-enhancement + text2image, torch mode
|
| 162 |
+
python sample_t2i.py --prompt "渔舟唱晚"
|
| 163 |
+
|
| 164 |
+
# close prompt enhancement, torch mode
|
| 165 |
+
python sample_t2i.py --prompt "渔舟唱晚" --no-enhance
|
| 166 |
+
|
| 167 |
+
# close prompt enhancement, flash attention mode
|
| 168 |
+
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚"
|
| 169 |
+
```
|
| 170 |
+
more example prompts can be found in [example_prompts.txt](example_prompts.txt)
|
| 171 |
+
|
| 172 |
+
Note: 20G GPU memory is used for sampling in single GPU
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
<!-- # **To-Do List**
|
| 176 |
+
|
| 177 |
+
- [x] Inference code
|
| 178 |
+
- [ ] Provide Tensorrt engine -->
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# **BibTeX**
|
| 185 |
+
If you find Hunyuan-DiT useful for your research and applications, please cite using this BibTeX:
|
| 186 |
+
|
| 187 |
+
```BibTeX
|
| 188 |
+
@inproceedings{,
|
| 189 |
+
title={},
|
| 190 |
+
author={},
|
| 191 |
+
booktitle={},
|
| 192 |
+
year={2024}
|
| 193 |
+
}
|
| 194 |
+
```
|