Upload DogeForCausalLM
Browse files- config.json +44 -37
- configuration_doge.py +58 -35
- generation_config.json +7 -7
- model.safetensors +2 -2
- modeling_doge.py +327 -199
config.json
CHANGED
|
@@ -1,37 +1,44 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "./results/Doge-20M
|
| 3 |
-
"architectures": [
|
| 4 |
-
"DogeForCausalLM"
|
| 5 |
-
],
|
| 6 |
-
"attention_dropout": 0.0,
|
| 7 |
-
"auto_map": {
|
| 8 |
-
"AutoConfig": "configuration_doge.DogeConfig",
|
| 9 |
-
"AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
|
| 10 |
-
},
|
| 11 |
-
"bos_token_id":
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./results/Doge-20M-Instruct-DPO",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DogeForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_doge.DogeConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 0,
|
| 12 |
+
"dynamic_mask_ratio": 0.0,
|
| 13 |
+
"eos_token_id": 1,
|
| 14 |
+
"expert_retrieval_size": 256,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_bias": false,
|
| 17 |
+
"hidden_dropout": 0.0,
|
| 18 |
+
"hidden_size": 256,
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 512,
|
| 21 |
+
"is_moe": false,
|
| 22 |
+
"max_position_embeddings": 2048,
|
| 23 |
+
"model_type": "doge",
|
| 24 |
+
"num_attention_heads": 2,
|
| 25 |
+
"num_cdmmoe_experts": 2048,
|
| 26 |
+
"num_cdmmoe_experts_per_head": 8,
|
| 27 |
+
"num_cdmmoe_heads": 4,
|
| 28 |
+
"num_channels": 3,
|
| 29 |
+
"num_hidden_layers": 8,
|
| 30 |
+
"num_key_value_heads": 1,
|
| 31 |
+
"pad_token_id": 2,
|
| 32 |
+
"patch_size": 16,
|
| 33 |
+
"rms_norm_eps": 1e-06,
|
| 34 |
+
"rope_scaling": {
|
| 35 |
+
"factor": 4.0,
|
| 36 |
+
"original_max_position_embeddings": 2048,
|
| 37 |
+
"rope_type": "dynamic"
|
| 38 |
+
},
|
| 39 |
+
"rope_theta": 10000.0,
|
| 40 |
+
"torch_dtype": "float32",
|
| 41 |
+
"transformers_version": "4.49.0.dev0",
|
| 42 |
+
"use_cache": true,
|
| 43 |
+
"vocab_size": 32768
|
| 44 |
+
}
|
configuration_doge.py
CHANGED
|
@@ -25,20 +25,23 @@ from transformers.modeling_rope_utils import rope_config_validation
|
|
| 25 |
class DogeConfig(PretrainedConfig):
|
| 26 |
r"""
|
| 27 |
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
|
| 28 |
-
model according to the specified arguments, defining the model architecture like [
|
| 29 |
|
| 30 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
|
| 33 |
Args:
|
| 34 |
vocab_size (`int`, *optional*, defaults to 32768):
|
| 35 |
-
Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
hidden_size (`int`, *optional*, defaults to 1024):
|
| 38 |
Dimension of the hidden representations.
|
| 39 |
-
intermediate_size (`int`, *optional*, defaults to
|
| 40 |
Dimension of the CDMoE representations.
|
| 41 |
-
num_hidden_layers (`int`, *optional*, defaults to
|
| 42 |
Number of hidden layers in the Transformer decoder.
|
| 43 |
hidden_bias (`bool`, *optional*, defaults to `False`):
|
| 44 |
Whether to use bias in the hidden layers.
|
|
@@ -51,24 +54,21 @@ class DogeConfig(PretrainedConfig):
|
|
| 51 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 52 |
The base period of the RoPE embeddings.
|
| 53 |
rope_scaling (`Dict`, *optional*):
|
| 54 |
-
Dictionary containing the scaling configuration for the RoPE embeddings.
|
| 55 |
-
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 56 |
-
accordingly.
|
| 57 |
Expected contents:
|
| 58 |
`rope_type` (`str`):
|
| 59 |
-
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 60 |
-
'llama3'], with 'default' being the original RoPE implementation.
|
| 61 |
`factor` (`float`, *optional*):
|
| 62 |
-
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
| 63 |
-
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 64 |
-
original maximum pre-trained length.
|
| 65 |
`original_max_position_embeddings` (`int`, *optional*):
|
| 66 |
-
Used with 'dynamic', 'longrope' and 'llama3'.
|
| 67 |
-
pretraining.
|
| 68 |
`attention_factor` (`float`, *optional*):
|
| 69 |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 70 |
-
computation.
|
| 71 |
-
`factor` field to infer the suggested value.
|
| 72 |
`beta_fast` (`float`, *optional*):
|
| 73 |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 74 |
ramp function. If unspecified, it defaults to 32.
|
|
@@ -76,13 +76,11 @@ class DogeConfig(PretrainedConfig):
|
|
| 76 |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 77 |
ramp function. If unspecified, it defaults to 1.
|
| 78 |
`short_factor` (`List[float]`, *optional*):
|
| 79 |
-
Only used with 'longrope'. The scaling factor to be applied to short contexts (
|
| 80 |
-
|
| 81 |
-
size divided by the number of attention heads divided by 2
|
| 82 |
`long_factor` (`List[float]`, *optional*):
|
| 83 |
-
Only used with 'longrope'. The scaling factor to be applied to long contexts (
|
| 84 |
-
|
| 85 |
-
size divided by the number of attention heads divided by 2
|
| 86 |
`low_freq_factor` (`float`, *optional*):
|
| 87 |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 88 |
`high_freq_factor` (`float`, *optional*):
|
|
@@ -100,15 +98,24 @@ class DogeConfig(PretrainedConfig):
|
|
| 100 |
Beginning of stream token id.
|
| 101 |
eos_token_id (`int`, *optional*, defaults to 2):
|
| 102 |
End of stream token id.
|
| 103 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `
|
| 104 |
Whether to tie weight embeddings
|
| 105 |
num_attention_heads (`int`, *optional*, defaults to 8):
|
| 106 |
Number of attention heads for each attention layer in the Transformer decoder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 108 |
The dropout ratio for the attention probabilities.
|
|
|
|
|
|
|
| 109 |
is_moe (`bool`, *optional*, defaults to `False`):
|
| 110 |
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize
|
| 111 |
-
num_cdmmoe_experts (`int`, *optional*, defaults to
|
| 112 |
Number of Private Experts for the Cross Domain Mixture of Experts.
|
| 113 |
num_cdmmoe_heads (`int`, *optional*, defaults to 4):
|
| 114 |
Number of heads of Private Experts for the Cross Domain Mixture of Experts.
|
|
@@ -124,32 +131,42 @@ class DogeConfig(PretrainedConfig):
|
|
| 124 |
def __init__(
|
| 125 |
self,
|
| 126 |
vocab_size=32768,
|
|
|
|
|
|
|
| 127 |
hidden_size=1024,
|
| 128 |
-
intermediate_size=
|
| 129 |
-
num_hidden_layers=
|
| 130 |
hidden_bias=False,
|
| 131 |
hidden_dropout=0.0,
|
| 132 |
hidden_act="silu",
|
| 133 |
max_position_embeddings=2048,
|
| 134 |
rope_theta=10000.0,
|
| 135 |
-
rope_scaling=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
initializer_range=0.02,
|
| 137 |
rms_norm_eps=1e-06,
|
| 138 |
use_cache=True,
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
tie_word_embeddings=
|
| 143 |
num_attention_heads=8,
|
|
|
|
| 144 |
attention_dropout=0.0,
|
|
|
|
| 145 |
is_moe=False,
|
| 146 |
-
num_cdmmoe_experts=
|
| 147 |
num_cdmmoe_heads=4,
|
| 148 |
num_cdmmoe_experts_per_head=8,
|
| 149 |
expert_retrieval_size=256,
|
| 150 |
**kwargs,
|
| 151 |
):
|
| 152 |
self.vocab_size = vocab_size
|
|
|
|
|
|
|
| 153 |
self.hidden_size = hidden_size
|
| 154 |
self.intermediate_size = intermediate_size
|
| 155 |
self.num_hidden_layers = num_hidden_layers
|
|
@@ -162,12 +179,14 @@ class DogeConfig(PretrainedConfig):
|
|
| 162 |
self.initializer_range = initializer_range
|
| 163 |
self.rms_norm_eps = rms_norm_eps
|
| 164 |
self.use_cache = use_cache
|
| 165 |
-
self.pad_token_id = pad_token_id
|
| 166 |
self.bos_token_id = bos_token_id
|
| 167 |
self.eos_token_id = eos_token_id
|
|
|
|
| 168 |
self.tie_word_embeddings = tie_word_embeddings
|
| 169 |
self.num_attention_heads = num_attention_heads
|
|
|
|
| 170 |
self.attention_dropout = attention_dropout
|
|
|
|
| 171 |
self.is_moe = is_moe
|
| 172 |
self.num_cdmmoe_experts = num_cdmmoe_experts
|
| 173 |
self.num_cdmmoe_heads = num_cdmmoe_heads
|
|
@@ -180,10 +199,14 @@ class DogeConfig(PretrainedConfig):
|
|
| 180 |
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 181 |
rope_config_validation(self)
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
super().__init__(
|
| 184 |
-
pad_token_id=pad_token_id,
|
| 185 |
bos_token_id=bos_token_id,
|
| 186 |
eos_token_id=eos_token_id,
|
|
|
|
| 187 |
tie_word_embeddings=tie_word_embeddings,
|
| 188 |
**kwargs,
|
| 189 |
)
|
|
|
|
| 25 |
class DogeConfig(PretrainedConfig):
|
| 26 |
r"""
|
| 27 |
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
|
| 28 |
+
model according to the specified arguments, defining the model architecture like [JingzeShi/Doge-20M](https://huggingface.co/JingzeShi/Doge-20M).
|
| 29 |
|
| 30 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
|
| 33 |
Args:
|
| 34 |
vocab_size (`int`, *optional*, defaults to 32768):
|
| 35 |
+
Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
|
| 36 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 37 |
+
Number of channels in the input image.
|
| 38 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 39 |
+
Patch size of Vision Transformer Embeddings.
|
| 40 |
hidden_size (`int`, *optional*, defaults to 1024):
|
| 41 |
Dimension of the hidden representations.
|
| 42 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
| 43 |
Dimension of the CDMoE representations.
|
| 44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 45 |
Number of hidden layers in the Transformer decoder.
|
| 46 |
hidden_bias (`bool`, *optional*, defaults to `False`):
|
| 47 |
Whether to use bias in the hidden layers.
|
|
|
|
| 54 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 55 |
The base period of the RoPE embeddings.
|
| 56 |
rope_scaling (`Dict`, *optional*):
|
| 57 |
+
Dictionary containing the scaling configuration for the RoPE embeddings.
|
| 58 |
+
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
|
|
|
|
| 59 |
Expected contents:
|
| 60 |
`rope_type` (`str`):
|
| 61 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
|
|
|
|
| 62 |
`factor` (`float`, *optional*):
|
| 63 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
| 64 |
+
In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
|
|
|
|
| 65 |
`original_max_position_embeddings` (`int`, *optional*):
|
| 66 |
+
Used with 'dynamic', 'longrope' and 'llama3'.
|
| 67 |
+
The original max position embeddings used during pretraining.
|
| 68 |
`attention_factor` (`float`, *optional*):
|
| 69 |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 70 |
+
computation.
|
| 71 |
+
If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
|
| 72 |
`beta_fast` (`float`, *optional*):
|
| 73 |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 74 |
ramp function. If unspecified, it defaults to 32.
|
|
|
|
| 76 |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 77 |
ramp function. If unspecified, it defaults to 1.
|
| 78 |
`short_factor` (`List[float]`, *optional*):
|
| 79 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
|
| 80 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
|
|
|
| 81 |
`long_factor` (`List[float]`, *optional*):
|
| 82 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
|
| 83 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
|
|
|
| 84 |
`low_freq_factor` (`float`, *optional*):
|
| 85 |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 86 |
`high_freq_factor` (`float`, *optional*):
|
|
|
|
| 98 |
Beginning of stream token id.
|
| 99 |
eos_token_id (`int`, *optional*, defaults to 2):
|
| 100 |
End of stream token id.
|
| 101 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
| 102 |
Whether to tie weight embeddings
|
| 103 |
num_attention_heads (`int`, *optional*, defaults to 8):
|
| 104 |
Number of attention heads for each attention layer in the Transformer decoder.
|
| 105 |
+
num_key_value_heads (`int`, *optional*, defaults to `None`):
|
| 106 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention.
|
| 107 |
+
If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 108 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
|
| 109 |
+
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
|
| 110 |
+
For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
|
| 111 |
+
If it is not specified, will default to `num_attention_heads`.
|
| 112 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 113 |
The dropout ratio for the attention probabilities.
|
| 114 |
+
dynamic_mask_ratio (`float`, *optional*, defaults to 0.0, range [0, 1]):
|
| 115 |
+
The ratio to control the proportion of the dynamic mask filled with the minimum value.
|
| 116 |
is_moe (`bool`, *optional*, defaults to `False`):
|
| 117 |
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize
|
| 118 |
+
num_cdmmoe_experts (`int`, *optional*, defaults to 2048):
|
| 119 |
Number of Private Experts for the Cross Domain Mixture of Experts.
|
| 120 |
num_cdmmoe_heads (`int`, *optional*, defaults to 4):
|
| 121 |
Number of heads of Private Experts for the Cross Domain Mixture of Experts.
|
|
|
|
| 131 |
def __init__(
|
| 132 |
self,
|
| 133 |
vocab_size=32768,
|
| 134 |
+
num_channels=3,
|
| 135 |
+
patch_size=16,
|
| 136 |
hidden_size=1024,
|
| 137 |
+
intermediate_size=2048,
|
| 138 |
+
num_hidden_layers=32,
|
| 139 |
hidden_bias=False,
|
| 140 |
hidden_dropout=0.0,
|
| 141 |
hidden_act="silu",
|
| 142 |
max_position_embeddings=2048,
|
| 143 |
rope_theta=10000.0,
|
| 144 |
+
rope_scaling={
|
| 145 |
+
"rope_type": "dynamic",
|
| 146 |
+
"factor": 4.0,
|
| 147 |
+
"original_max_position_embeddings": 2048,
|
| 148 |
+
},
|
| 149 |
initializer_range=0.02,
|
| 150 |
rms_norm_eps=1e-06,
|
| 151 |
use_cache=True,
|
| 152 |
+
bos_token_id=0,
|
| 153 |
+
eos_token_id=1,
|
| 154 |
+
pad_token_id=2,
|
| 155 |
+
tie_word_embeddings=True,
|
| 156 |
num_attention_heads=8,
|
| 157 |
+
num_key_value_heads=None,
|
| 158 |
attention_dropout=0.0,
|
| 159 |
+
dynamic_mask_ratio=0.0,
|
| 160 |
is_moe=False,
|
| 161 |
+
num_cdmmoe_experts=2048,
|
| 162 |
num_cdmmoe_heads=4,
|
| 163 |
num_cdmmoe_experts_per_head=8,
|
| 164 |
expert_retrieval_size=256,
|
| 165 |
**kwargs,
|
| 166 |
):
|
| 167 |
self.vocab_size = vocab_size
|
| 168 |
+
self.num_channels = num_channels
|
| 169 |
+
self.patch_size = patch_size
|
| 170 |
self.hidden_size = hidden_size
|
| 171 |
self.intermediate_size = intermediate_size
|
| 172 |
self.num_hidden_layers = num_hidden_layers
|
|
|
|
| 179 |
self.initializer_range = initializer_range
|
| 180 |
self.rms_norm_eps = rms_norm_eps
|
| 181 |
self.use_cache = use_cache
|
|
|
|
| 182 |
self.bos_token_id = bos_token_id
|
| 183 |
self.eos_token_id = eos_token_id
|
| 184 |
+
self.pad_token_id = pad_token_id
|
| 185 |
self.tie_word_embeddings = tie_word_embeddings
|
| 186 |
self.num_attention_heads = num_attention_heads
|
| 187 |
+
self.num_key_value_heads = num_key_value_heads
|
| 188 |
self.attention_dropout = attention_dropout
|
| 189 |
+
self.dynamic_mask_ratio = dynamic_mask_ratio
|
| 190 |
self.is_moe = is_moe
|
| 191 |
self.num_cdmmoe_experts = num_cdmmoe_experts
|
| 192 |
self.num_cdmmoe_heads = num_cdmmoe_heads
|
|
|
|
| 199 |
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 200 |
rope_config_validation(self)
|
| 201 |
|
| 202 |
+
# for backward compatibility
|
| 203 |
+
if num_key_value_heads is None:
|
| 204 |
+
self.num_key_value_heads = num_attention_heads
|
| 205 |
+
|
| 206 |
super().__init__(
|
|
|
|
| 207 |
bos_token_id=bos_token_id,
|
| 208 |
eos_token_id=eos_token_id,
|
| 209 |
+
pad_token_id=pad_token_id,
|
| 210 |
tie_word_embeddings=tie_word_embeddings,
|
| 211 |
**kwargs,
|
| 212 |
)
|
generation_config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_from_model_config": true,
|
| 3 |
-
"bos_token_id":
|
| 4 |
-
"eos_token_id":
|
| 5 |
-
"pad_token_id":
|
| 6 |
-
"transformers_version": "4.
|
| 7 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 1,
|
| 5 |
+
"pad_token_id": 2,
|
| 6 |
+
"transformers_version": "4.49.0.dev0"
|
| 7 |
+
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae49b37c117138c1880aa9d2f1c140436772eb3cc1f9d1c73a2e2a0643100b2b
|
| 3 |
+
size 52482152
|
modeling_doge.py
CHANGED
|
@@ -39,6 +39,7 @@ from transformers.modeling_utils import PreTrainedModel
|
|
| 39 |
from transformers.utils import (
|
| 40 |
add_start_docstrings,
|
| 41 |
add_start_docstrings_to_model_forward,
|
|
|
|
| 42 |
logging,
|
| 43 |
replace_return_docstrings,
|
| 44 |
)
|
|
@@ -49,6 +50,9 @@ try:
|
|
| 49 |
except ImportError:
|
| 50 |
einx_add = None
|
| 51 |
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
logger = logging.get_logger(__name__)
|
| 54 |
|
|
@@ -79,7 +83,7 @@ class Residual(nn.Module):
|
|
| 79 |
def __init__(self, hidden_size):
|
| 80 |
super().__init__()
|
| 81 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 82 |
-
|
| 83 |
def forward(self, residual_states, hidden_states):
|
| 84 |
return self.weight * residual_states + hidden_states
|
| 85 |
|
|
@@ -92,10 +96,10 @@ class RotaryEmbedding(nn.Module):
|
|
| 92 |
super().__init__()
|
| 93 |
self.rope_kwargs = {}
|
| 94 |
|
| 95 |
-
if config.rope_scaling is None:
|
| 96 |
-
self.rope_type = "
|
| 97 |
else:
|
| 98 |
-
self.rope_type =
|
| 99 |
self.max_seq_len_cached = config.max_position_embeddings
|
| 100 |
self.original_max_seq_len = config.max_position_embeddings
|
| 101 |
self.base = config.rope_theta
|
|
@@ -133,6 +137,7 @@ class RotaryEmbedding(nn.Module):
|
|
| 133 |
# core RoPE block
|
| 134 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 135 |
position_ids_expanded = position_ids[:, None, :].float()
|
|
|
|
| 136 |
device_type = x.device.type
|
| 137 |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 138 |
with torch.autocast(device_type=device_type, enabled=False):
|
|
@@ -141,6 +146,7 @@ class RotaryEmbedding(nn.Module):
|
|
| 141 |
cos = emb.cos()
|
| 142 |
sin = emb.sin()
|
| 143 |
|
|
|
|
| 144 |
cos = cos * self.attention_scaling
|
| 145 |
sin = sin * self.attention_scaling
|
| 146 |
|
|
@@ -168,11 +174,10 @@ def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
| 168 |
Deprecated and unused.
|
| 169 |
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 170 |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 171 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k.
|
| 172 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim].
|
| 173 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 174 |
-
|
| 175 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 176 |
Returns:
|
| 177 |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 178 |
"""
|
|
@@ -183,6 +188,18 @@ def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
| 183 |
return q_embed, k_embed
|
| 184 |
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
class DogeDynamicMaskAttention(nn.Module):
|
| 187 |
"""Dynamic Mask Attention from 'Wonderful Matrices' paper."""
|
| 188 |
|
|
@@ -193,46 +210,26 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 193 |
self.layer_idx = layer_idx
|
| 194 |
if layer_idx is None:
|
| 195 |
logger.warning_once(
|
| 196 |
-
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 197 |
-
"
|
| 198 |
-
"when creating this class."
|
| 199 |
)
|
| 200 |
|
| 201 |
self.hidden_dim = config.hidden_size
|
| 202 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 203 |
self.attention_dropout = config.attention_dropout
|
| 204 |
-
self.
|
| 205 |
|
| 206 |
# Q K V O projections
|
| 207 |
-
self.q_proj = nn.Linear(
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
bias=config.hidden_bias,
|
| 211 |
-
)
|
| 212 |
-
self.k_proj = nn.Linear(
|
| 213 |
-
self.hidden_dim,
|
| 214 |
-
self.num_attention_heads * self.attention_head_dim,
|
| 215 |
-
bias=config.hidden_bias,
|
| 216 |
-
)
|
| 217 |
# dynamic mask for the QK^T attention score matrix
|
| 218 |
-
self.A = nn.Parameter(
|
| 219 |
-
|
| 220 |
-
)
|
| 221 |
-
self.dt_proj = nn.Linear(
|
| 222 |
-
self.hidden_dim,
|
| 223 |
-
self.num_attention_heads,
|
| 224 |
-
bias=config.hidden_bias,
|
| 225 |
-
)
|
| 226 |
-
self.v_proj = nn.Linear(
|
| 227 |
-
self.hidden_dim,
|
| 228 |
-
self.num_attention_heads * self.attention_head_dim,
|
| 229 |
-
bias=config.hidden_bias,
|
| 230 |
-
)
|
| 231 |
-
self.o_proj = nn.Linear(
|
| 232 |
-
self.hidden_dim,
|
| 233 |
-
self.hidden_dim,
|
| 234 |
-
bias=config.hidden_bias,
|
| 235 |
-
)
|
| 236 |
|
| 237 |
def forward(
|
| 238 |
self,
|
|
@@ -250,15 +247,9 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 250 |
key_states = self.k_proj(hidden_states)
|
| 251 |
value_states = self.v_proj(hidden_states)
|
| 252 |
|
| 253 |
-
query_states = query_states.view(bsz, q_len,
|
| 254 |
-
|
| 255 |
-
)
|
| 256 |
-
key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
|
| 257 |
-
1, 2
|
| 258 |
-
)
|
| 259 |
-
value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
|
| 260 |
-
1, 2
|
| 261 |
-
)
|
| 262 |
|
| 263 |
cos, sin = position_embeddings
|
| 264 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
@@ -268,16 +259,25 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 268 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 269 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
# compute attention scores matrix
|
| 272 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / math.sqrt(self.
|
| 273 |
|
| 274 |
# add mask to attention scores
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
dynamic_mask
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
| 281 |
|
| 282 |
# upcast attention scores to fp32
|
| 283 |
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
@@ -292,8 +292,35 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 292 |
|
| 293 |
return attn_output, past_key_value
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
-
class
|
| 297 |
|
| 298 |
def forward(
|
| 299 |
self,
|
|
@@ -311,9 +338,9 @@ class DogeSdpaDynamicMaskAttn(DogeDynamicMaskAttention):
|
|
| 311 |
key_states = self.k_proj(hidden_states)
|
| 312 |
value_states = self.v_proj(hidden_states)
|
| 313 |
|
| 314 |
-
query_states = query_states.view(bsz, q_len,
|
| 315 |
-
key_states = key_states.view(bsz, q_len,
|
| 316 |
-
value_states = value_states.view(bsz, q_len,
|
| 317 |
|
| 318 |
cos, sin = position_embeddings
|
| 319 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
@@ -322,23 +349,31 @@ class DogeSdpaDynamicMaskAttn(DogeDynamicMaskAttention):
|
|
| 322 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 323 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 324 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
dynamic_mask
|
| 329 |
-
|
| 330 |
-
|
|
|
|
| 331 |
|
| 332 |
query_states = query_states.contiguous()
|
| 333 |
key_states = key_states.contiguous()
|
| 334 |
value_states = value_states.contiguous()
|
| 335 |
|
|
|
|
|
|
|
| 336 |
attn_output = F.scaled_dot_product_attention(
|
| 337 |
query_states,
|
| 338 |
key_states,
|
| 339 |
value_states,
|
| 340 |
-
attn_mask=
|
| 341 |
-
dropout_p=self.attention_dropout,
|
|
|
|
| 342 |
)
|
| 343 |
|
| 344 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
@@ -348,9 +383,70 @@ class DogeSdpaDynamicMaskAttn(DogeDynamicMaskAttention):
|
|
| 348 |
return attn_output, past_key_value
|
| 349 |
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
DOGE_ATTENTION_CLASSES = {
|
|
|
|
| 352 |
"eager": DogeDynamicMaskAttention,
|
| 353 |
-
"sdpa":
|
| 354 |
}
|
| 355 |
|
| 356 |
|
|
@@ -362,21 +458,9 @@ class DogeMLP(nn.Module):
|
|
| 362 |
self.intermediate_dim = config.intermediate_size
|
| 363 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 364 |
|
| 365 |
-
self.gate_proj = nn.Linear(
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
bias=config.hidden_bias,
|
| 369 |
-
)
|
| 370 |
-
self.up_proj = nn.Linear(
|
| 371 |
-
self.hidden_dim,
|
| 372 |
-
self.intermediate_dim,
|
| 373 |
-
bias=config.hidden_bias,
|
| 374 |
-
)
|
| 375 |
-
self.down_proj = nn.Linear(
|
| 376 |
-
self.intermediate_dim,
|
| 377 |
-
self.hidden_dim,
|
| 378 |
-
bias=config.hidden_bias,
|
| 379 |
-
)
|
| 380 |
|
| 381 |
def forward(
|
| 382 |
self,
|
|
@@ -402,30 +486,12 @@ class DogeCDMoE(DogeMLP):
|
|
| 402 |
self.num_keys = int(math.sqrt(self.num_cdmmoe_experts))
|
| 403 |
|
| 404 |
# queries and keys for retrieval experts
|
| 405 |
-
self.queries = nn.Linear(
|
| 406 |
-
|
| 407 |
-
self.num_cdmmoe_heads * self.expert_retrieval_dim,
|
| 408 |
-
bias=False,
|
| 409 |
-
)
|
| 410 |
-
self.keys = nn.Parameter(
|
| 411 |
-
torch.zeros(
|
| 412 |
-
self.num_cdmmoe_heads,
|
| 413 |
-
self.num_keys,
|
| 414 |
-
2,
|
| 415 |
-
self.expert_retrieval_dim // 2,
|
| 416 |
-
)
|
| 417 |
-
)
|
| 418 |
|
| 419 |
# experts
|
| 420 |
-
self.down_embed = nn.Embedding(
|
| 421 |
-
|
| 422 |
-
self.hidden_dim,
|
| 423 |
-
)
|
| 424 |
-
self.up_embed = nn.Embedding(
|
| 425 |
-
self.num_cdmmoe_experts,
|
| 426 |
-
self.hidden_dim,
|
| 427 |
-
)
|
| 428 |
-
|
| 429 |
|
| 430 |
def forward(
|
| 431 |
self,
|
|
@@ -468,13 +534,13 @@ class DogeDecoderLayer(nn.Module):
|
|
| 468 |
super().__init__()
|
| 469 |
self.hidden_dropout = config.hidden_dropout
|
| 470 |
|
| 471 |
-
self.
|
| 472 |
-
self.
|
| 473 |
-
self.
|
| 474 |
|
| 475 |
-
self.
|
| 476 |
self.feed_forward = DogeMLP(config) if config.is_moe == False else DogeCDMoE(config)
|
| 477 |
-
self.
|
| 478 |
|
| 479 |
def forward(
|
| 480 |
self,
|
|
@@ -492,29 +558,25 @@ class DogeDecoderLayer(nn.Module):
|
|
| 492 |
Args:
|
| 493 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 494 |
attention_mask (`torch.FloatTensor`, *optional*):
|
| 495 |
-
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 496 |
-
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 497 |
output_attentions (`bool`, *optional*):
|
| 498 |
-
Whether or not to return the attentions tensors of all attention layers.
|
| 499 |
-
returned tensors for more detail.
|
| 500 |
use_cache (`bool`, *optional*):
|
| 501 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 502 |
-
(see `past_key_values`).
|
| 503 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 504 |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 505 |
Indices depicting the position of the input sequence tokens in the sequence
|
| 506 |
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 507 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 508 |
-
with `head_dim` being the embedding dimension of each attention head.
|
| 509 |
kwargs (`dict`, *optional*):
|
| 510 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 511 |
-
into the model
|
| 512 |
"""
|
| 513 |
|
| 514 |
# sequence transformation
|
| 515 |
residual = hidden_states
|
| 516 |
-
hidden_states = self.
|
| 517 |
-
hidden_states, present_key_value = self.
|
| 518 |
hidden_states=hidden_states,
|
| 519 |
attention_mask=attention_mask,
|
| 520 |
position_ids=position_ids,
|
|
@@ -525,14 +587,14 @@ class DogeDecoderLayer(nn.Module):
|
|
| 525 |
)
|
| 526 |
self_attn_weights = None
|
| 527 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 528 |
-
hidden_states = self.
|
| 529 |
|
| 530 |
# state transformation
|
| 531 |
residual = hidden_states
|
| 532 |
-
hidden_states = self.
|
| 533 |
hidden_states = self.feed_forward(hidden_states)
|
| 534 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 535 |
-
hidden_states = self.
|
| 536 |
|
| 537 |
outputs = (hidden_states,)
|
| 538 |
|
|
@@ -552,6 +614,7 @@ class DogePreTrainedModel(PreTrainedModel):
|
|
| 552 |
supports_gradient_checkpointing = True
|
| 553 |
_no_split_modules = ["DogeDecoderLayer"]
|
| 554 |
_skip_keys_device_placement = ["past_key_values"]
|
|
|
|
| 555 |
_supports_sdpa = True
|
| 556 |
_supports_cache_class = True
|
| 557 |
_supports_quantized_cache = True
|
|
@@ -572,11 +635,10 @@ class DogePreTrainedModel(PreTrainedModel):
|
|
| 572 |
DOGE_INPUTS_DOCSTRING = r"""
|
| 573 |
Args:
|
| 574 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 575 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 576 |
-
it.
|
| 577 |
|
| 578 |
-
Indices can be obtained using [`AutoTokenizer`].
|
| 579 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 580 |
|
| 581 |
[What are input IDs?](../glossary#input-ids)
|
| 582 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -587,60 +649,48 @@ DOGE_INPUTS_DOCSTRING = r"""
|
|
| 587 |
|
| 588 |
[What are attention masks?](../glossary#attention-mask)
|
| 589 |
|
| 590 |
-
Indices can be obtained using [`AutoTokenizer`].
|
| 591 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 592 |
|
| 593 |
-
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 594 |
-
`past_key_values`).
|
| 595 |
|
| 596 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 597 |
-
|
| 598 |
-
information on the default strategy.
|
| 599 |
|
| 600 |
- 1 indicates the head is **not masked**,
|
| 601 |
- 0 indicates the head is **masked**.
|
| 602 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 603 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 604 |
-
config.n_positions - 1]`.
|
| 605 |
|
| 606 |
[What are position IDs?](../glossary#position-ids)
|
| 607 |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 608 |
-
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 609 |
-
|
| 610 |
-
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 611 |
|
| 612 |
Two formats are allowed:
|
| 613 |
-
- a [`~cache_utils.Cache`] instance, see our
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
cache format.
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
legacy cache format will be returned.
|
| 621 |
-
|
| 622 |
-
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 623 |
-
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 624 |
-
of shape `(batch_size, sequence_length)`.
|
| 625 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 626 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 627 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 628 |
-
model's internal embedding lookup matrix.
|
| 629 |
use_cache (`bool`, *optional*):
|
| 630 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 631 |
-
`past_key_values`).
|
| 632 |
output_attentions (`bool`, *optional*):
|
| 633 |
-
Whether or not to return the attentions tensors of all attention layers.
|
| 634 |
-
tensors for more detail.
|
| 635 |
output_hidden_states (`bool`, *optional*):
|
| 636 |
-
Whether or not to return the hidden states of all layers.
|
| 637 |
-
more detail.
|
| 638 |
return_dict (`bool`, *optional*):
|
| 639 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 640 |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 641 |
-
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 642 |
-
|
| 643 |
-
the complete sequence length.
|
| 644 |
"""
|
| 645 |
|
| 646 |
|
|
@@ -711,9 +761,9 @@ class DogeModel(DogePreTrainedModel):
|
|
| 711 |
else:
|
| 712 |
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 713 |
logger.warning_once(
|
| 714 |
-
"We detected that you are passing `past_key_values` as a tuple of tuples.
|
| 715 |
-
"will be removed in v4.47.
|
| 716 |
-
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 717 |
)
|
| 718 |
|
| 719 |
if cache_position is None:
|
|
@@ -739,7 +789,7 @@ class DogeModel(DogePreTrainedModel):
|
|
| 739 |
all_self_attns = () if output_attentions else None
|
| 740 |
next_decoder_cache = None
|
| 741 |
|
| 742 |
-
for decoder_layer in self.layers:
|
| 743 |
if output_hidden_states:
|
| 744 |
all_hidden_states += (hidden_states,)
|
| 745 |
|
|
@@ -842,18 +892,15 @@ class DogeModel(DogePreTrainedModel):
|
|
| 842 |
**kwargs,
|
| 843 |
):
|
| 844 |
"""
|
| 845 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 846 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 847 |
|
| 848 |
Args:
|
| 849 |
attention_mask (`torch.Tensor`):
|
| 850 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 851 |
-
`(batch_size, 1, query_length, key_value_length)`.
|
| 852 |
sequence_length (`int`):
|
| 853 |
The sequence length being processed.
|
| 854 |
target_length (`int`):
|
| 855 |
-
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 856 |
-
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 857 |
dtype (`torch.dtype`):
|
| 858 |
The dtype to use for the 4D attention mask.
|
| 859 |
device (`torch.device`):
|
|
@@ -912,13 +959,13 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 912 |
|
| 913 |
def set_output_embeddings(self, new_embeddings):
|
| 914 |
self.lm_head = new_embeddings
|
|
|
|
|
|
|
|
|
|
| 915 |
|
| 916 |
def set_decoder(self, decoder):
|
| 917 |
self.model = decoder
|
| 918 |
|
| 919 |
-
def get_decoder(self):
|
| 920 |
-
return self.model
|
| 921 |
-
|
| 922 |
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 923 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 924 |
def forward(
|
|
@@ -926,7 +973,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 926 |
input_ids: torch.LongTensor = None,
|
| 927 |
attention_mask: Optional[torch.Tensor] = None,
|
| 928 |
position_ids: Optional[torch.LongTensor] = None,
|
| 929 |
-
past_key_values: Optional[torch.
|
| 930 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 931 |
labels: Optional[torch.LongTensor] = None,
|
| 932 |
use_cache: Optional[bool] = None,
|
|
@@ -935,19 +982,19 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 935 |
return_dict: Optional[bool] = None,
|
| 936 |
cache_position: Optional[torch.LongTensor] = None,
|
| 937 |
num_logits_to_keep: int = 0,
|
| 938 |
-
**
|
| 939 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 940 |
r"""
|
| 941 |
Args:
|
| 942 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 943 |
-
Labels for computing the masked language modeling loss.
|
| 944 |
-
config.vocab_size]` or -100 (see `input_ids` docstring).
|
| 945 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 946 |
|
| 947 |
num_logits_to_keep (`int`, *optional*):
|
| 948 |
-
Calculate logits for the last `num_logits_to_keep` tokens.
|
| 949 |
-
`input_ids` (special case).
|
| 950 |
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 951 |
|
| 952 |
Returns:
|
| 953 |
"""
|
|
@@ -969,6 +1016,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 969 |
output_hidden_states=output_hidden_states,
|
| 970 |
return_dict=return_dict,
|
| 971 |
cache_position=cache_position,
|
|
|
|
| 972 |
)
|
| 973 |
|
| 974 |
hidden_states = outputs[0]
|
|
@@ -978,7 +1026,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 978 |
|
| 979 |
loss = None
|
| 980 |
if labels is not None:
|
| 981 |
-
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **
|
| 982 |
|
| 983 |
if not return_dict:
|
| 984 |
output = (logits,) + outputs[1:]
|
|
@@ -993,18 +1041,98 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 993 |
)
|
| 994 |
|
| 995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 996 |
@add_start_docstrings(
|
| 997 |
"""
|
| 998 |
The Doge Model transformer with a sequence classification head on top (linear layer).
|
| 999 |
|
| 1000 |
-
[`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1001 |
-
(e.g. GPT-2) do.
|
| 1002 |
|
| 1003 |
-
Since it does classification on the last token, it requires to know the position of the last token.
|
| 1004 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
|
| 1005 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch.
|
| 1006 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1007 |
-
each row of the batch).
|
| 1008 |
"""
|
| 1009 |
)
|
| 1010 |
class DogeForSequenceClassification(DogePreTrainedModel):
|
|
@@ -1041,9 +1169,9 @@ class DogeForSequenceClassification(DogePreTrainedModel):
|
|
| 1041 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1042 |
r"""
|
| 1043 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1044 |
-
Labels for computing the sequence classification/regression loss.
|
| 1045 |
-
|
| 1046 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1047 |
"""
|
| 1048 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1049 |
|
|
|
|
| 39 |
from transformers.utils import (
|
| 40 |
add_start_docstrings,
|
| 41 |
add_start_docstrings_to_model_forward,
|
| 42 |
+
is_torch_greater_or_equal,
|
| 43 |
logging,
|
| 44 |
replace_return_docstrings,
|
| 45 |
)
|
|
|
|
| 50 |
except ImportError:
|
| 51 |
einx_add = None
|
| 52 |
|
| 53 |
+
if is_torch_greater_or_equal("2.5"):
|
| 54 |
+
from torch.nn.attention.flex_attention import flex_attention
|
| 55 |
+
|
| 56 |
|
| 57 |
logger = logging.get_logger(__name__)
|
| 58 |
|
|
|
|
| 83 |
def __init__(self, hidden_size):
|
| 84 |
super().__init__()
|
| 85 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 86 |
+
|
| 87 |
def forward(self, residual_states, hidden_states):
|
| 88 |
return self.weight * residual_states + hidden_states
|
| 89 |
|
|
|
|
| 96 |
super().__init__()
|
| 97 |
self.rope_kwargs = {}
|
| 98 |
|
| 99 |
+
if config.rope_scaling is not None:
|
| 100 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 101 |
else:
|
| 102 |
+
self.rope_type = "default"
|
| 103 |
self.max_seq_len_cached = config.max_position_embeddings
|
| 104 |
self.original_max_seq_len = config.max_position_embeddings
|
| 105 |
self.base = config.rope_theta
|
|
|
|
| 137 |
# core RoPE block
|
| 138 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 139 |
position_ids_expanded = position_ids[:, None, :].float()
|
| 140 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 141 |
device_type = x.device.type
|
| 142 |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 143 |
with torch.autocast(device_type=device_type, enabled=False):
|
|
|
|
| 146 |
cos = emb.cos()
|
| 147 |
sin = emb.sin()
|
| 148 |
|
| 149 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 150 |
cos = cos * self.attention_scaling
|
| 151 |
sin = sin * self.attention_scaling
|
| 152 |
|
|
|
|
| 174 |
Deprecated and unused.
|
| 175 |
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 176 |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 177 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k.
|
| 178 |
+
For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim].
|
| 179 |
+
Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k.
|
| 180 |
+
Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
|
|
| 181 |
Returns:
|
| 182 |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 183 |
"""
|
|
|
|
| 188 |
return q_embed, k_embed
|
| 189 |
|
| 190 |
|
| 191 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 192 |
+
"""
|
| 193 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
| 194 |
+
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 195 |
+
"""
|
| 196 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 197 |
+
if n_rep == 1:
|
| 198 |
+
return hidden_states
|
| 199 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 200 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
class DogeDynamicMaskAttention(nn.Module):
|
| 204 |
"""Dynamic Mask Attention from 'Wonderful Matrices' paper."""
|
| 205 |
|
|
|
|
| 210 |
self.layer_idx = layer_idx
|
| 211 |
if layer_idx is None:
|
| 212 |
logger.warning_once(
|
| 213 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will lead to errors during the forward call if caching is used. "
|
| 214 |
+
"Please make sure to provide a `layer_idx` when creating this class."
|
|
|
|
| 215 |
)
|
| 216 |
|
| 217 |
self.hidden_dim = config.hidden_size
|
| 218 |
+
self.num_heads = config.num_attention_heads
|
| 219 |
+
self.head_dim = self.hidden_dim // self.num_heads
|
| 220 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 221 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 222 |
self.attention_dropout = config.attention_dropout
|
| 223 |
+
self.dynamic_mask_ratio = config.dynamic_mask_ratio
|
| 224 |
|
| 225 |
# Q K V O projections
|
| 226 |
+
self.q_proj = nn.Linear(self.hidden_dim, self.num_heads * self.head_dim, bias=config.hidden_bias)
|
| 227 |
+
self.k_proj = nn.Linear(self.hidden_dim, self.num_key_value_heads * self.head_dim, bias=config.hidden_bias)
|
| 228 |
+
self.v_proj = nn.Linear(self.hidden_dim, self.num_key_value_heads * self.head_dim, bias=config.hidden_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
# dynamic mask for the QK^T attention score matrix
|
| 230 |
+
self.A = nn.Parameter(torch.ones(self.num_heads))
|
| 231 |
+
self.dt_proj = nn.Linear(self.num_key_value_heads * self.head_dim, self.num_heads, bias=config.hidden_bias)
|
| 232 |
+
self.o_proj = nn.Linear(self.hidden_dim, self.hidden_dim, bias=config.hidden_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
def forward(
|
| 235 |
self,
|
|
|
|
| 247 |
key_states = self.k_proj(hidden_states)
|
| 248 |
value_states = self.v_proj(hidden_states)
|
| 249 |
|
| 250 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 251 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 252 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
cos, sin = position_embeddings
|
| 255 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
| 259 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 260 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 261 |
|
| 262 |
+
# calculate dynamic mask from value_states
|
| 263 |
+
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(bsz, value_states.shape[-2], -1))
|
| 264 |
+
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
| 265 |
+
|
| 266 |
+
# repeat key and value states
|
| 267 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 268 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 269 |
+
|
| 270 |
# compute attention scores matrix
|
| 271 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / math.sqrt(self.head_dim)
|
| 272 |
|
| 273 |
# add mask to attention scores
|
| 274 |
+
attn_mask = self.prepare_dynamic_mask(
|
| 275 |
+
hidden_states=hidden_states,
|
| 276 |
+
dynamic_mask=dynamic_mask,
|
| 277 |
+
dynamic_mask_ratio=0.1,
|
| 278 |
+
attention_mask=attention_mask,
|
| 279 |
+
)
|
| 280 |
+
attn_weights = attn_weights + attn_mask
|
| 281 |
|
| 282 |
# upcast attention scores to fp32
|
| 283 |
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
|
| 292 |
|
| 293 |
return attn_output, past_key_value
|
| 294 |
|
| 295 |
+
def prepare_dynamic_mask(
|
| 296 |
+
self,
|
| 297 |
+
hidden_states: torch.Tensor,
|
| 298 |
+
dynamic_mask: torch.Tensor,
|
| 299 |
+
dynamic_mask_ratio: float = 0.0,
|
| 300 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 301 |
+
):
|
| 302 |
+
"""
|
| 303 |
+
Combine `dynamic_mask` with `attention_mask` to generate the final `attn_mask`.
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
|
| 307 |
+
dynamic_mask (`torch.Tensor`): dynamic mask of shape `(batch_size, num_heads, key_sequence_length)`.
|
| 308 |
+
dynamic_mask_ratio (`float`, *optional*): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value.
|
| 309 |
+
attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
|
| 310 |
+
"""
|
| 311 |
+
min_type = torch.finfo(hidden_states.dtype).min
|
| 312 |
+
attn_mask = dynamic_mask[:, :, None, :]
|
| 313 |
+
if 0.0 < dynamic_mask_ratio < 1.0:
|
| 314 |
+
num_dynamic_mask = int(attn_mask.shape[-1] * dynamic_mask_ratio)
|
| 315 |
+
if num_dynamic_mask > 0:
|
| 316 |
+
rate_value = torch.kthvalue(attn_mask, num_dynamic_mask, dim=-1, keepdim=True).values
|
| 317 |
+
attn_mask = attn_mask.masked_fill(attn_mask < rate_value, min_type)
|
| 318 |
+
if attention_mask is not None:
|
| 319 |
+
attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : hidden_states.shape[-2]] == min_type, min_type)
|
| 320 |
+
return attn_mask
|
| 321 |
+
|
| 322 |
|
| 323 |
+
class DogeSdpaDynamicMaskAttention(DogeDynamicMaskAttention):
|
| 324 |
|
| 325 |
def forward(
|
| 326 |
self,
|
|
|
|
| 338 |
key_states = self.k_proj(hidden_states)
|
| 339 |
value_states = self.v_proj(hidden_states)
|
| 340 |
|
| 341 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 342 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 343 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 344 |
|
| 345 |
cos, sin = position_embeddings
|
| 346 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
| 349 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 350 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 351 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 352 |
+
|
| 353 |
+
# calculate dynamic mask from value_states
|
| 354 |
+
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(bsz, value_states.shape[-2], -1))
|
| 355 |
+
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
| 356 |
|
| 357 |
+
attn_mask = self.prepare_dynamic_mask(
|
| 358 |
+
hidden_states=hidden_states,
|
| 359 |
+
dynamic_mask=dynamic_mask,
|
| 360 |
+
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
| 361 |
+
attention_mask=attention_mask,
|
| 362 |
+
)
|
| 363 |
|
| 364 |
query_states = query_states.contiguous()
|
| 365 |
key_states = key_states.contiguous()
|
| 366 |
value_states = value_states.contiguous()
|
| 367 |
|
| 368 |
+
# NOTE: As of pytorch 2.5.1, cuDNN's SDPA backward pass is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
|
| 369 |
+
torch.backends.cuda.enable_cudnn_sdp(False)
|
| 370 |
attn_output = F.scaled_dot_product_attention(
|
| 371 |
query_states,
|
| 372 |
key_states,
|
| 373 |
value_states,
|
| 374 |
+
attn_mask=attn_mask,
|
| 375 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 376 |
+
enable_gqa=True,
|
| 377 |
)
|
| 378 |
|
| 379 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
| 383 |
return attn_output, past_key_value
|
| 384 |
|
| 385 |
|
| 386 |
+
class DogeFlexDynamicMaskAttention(DogeDynamicMaskAttention):
|
| 387 |
+
|
| 388 |
+
def forward(
|
| 389 |
+
self,
|
| 390 |
+
hidden_states: torch.Tensor,
|
| 391 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 392 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 393 |
+
past_key_value: Optional[Cache] = None,
|
| 394 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 395 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 396 |
+
**kwargs,
|
| 397 |
+
) -> Tuple[torch.Tensor, Optional[Cache]]:
|
| 398 |
+
bsz, q_len, _ = hidden_states.shape
|
| 399 |
+
|
| 400 |
+
query_states = self.q_proj(hidden_states)
|
| 401 |
+
key_states = self.k_proj(hidden_states)
|
| 402 |
+
value_states = self.v_proj(hidden_states)
|
| 403 |
+
|
| 404 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 405 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 406 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 407 |
+
|
| 408 |
+
cos, sin = position_embeddings
|
| 409 |
+
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 410 |
+
|
| 411 |
+
if past_key_value is not None:
|
| 412 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 413 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 414 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 415 |
+
|
| 416 |
+
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(bsz, value_states.shape[-2], -1))
|
| 417 |
+
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
| 418 |
+
|
| 419 |
+
attn_mask = self.prepare_dynamic_mask(
|
| 420 |
+
hidden_states=hidden_states,
|
| 421 |
+
dynamic_mask=dynamic_mask,
|
| 422 |
+
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
| 423 |
+
attention_mask=attention_mask,
|
| 424 |
+
)
|
| 425 |
+
# TODO: flex_attention: Captured buffers that require grad are not yet supported.
|
| 426 |
+
# NOTE: So we only use flex_attention in inference mode.
|
| 427 |
+
def dynamic_mask_mod(score, batch, head, q_idx, kv_idx):
|
| 428 |
+
score = score + attn_mask[batch][head][q_idx][kv_idx]
|
| 429 |
+
return score
|
| 430 |
+
|
| 431 |
+
attn_output = flex_attention(
|
| 432 |
+
query_states,
|
| 433 |
+
key_states,
|
| 434 |
+
value_states,
|
| 435 |
+
score_mod=dynamic_mask_mod,
|
| 436 |
+
enable_gqa=True,
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 440 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
| 441 |
+
attn_output = self.o_proj(attn_output)
|
| 442 |
+
|
| 443 |
+
return attn_output, past_key_value
|
| 444 |
+
|
| 445 |
+
|
| 446 |
DOGE_ATTENTION_CLASSES = {
|
| 447 |
+
"flex_attention": DogeFlexDynamicMaskAttention,
|
| 448 |
"eager": DogeDynamicMaskAttention,
|
| 449 |
+
"sdpa": DogeSdpaDynamicMaskAttention,
|
| 450 |
}
|
| 451 |
|
| 452 |
|
|
|
|
| 458 |
self.intermediate_dim = config.intermediate_size
|
| 459 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 460 |
|
| 461 |
+
self.gate_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
|
| 462 |
+
self.up_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
|
| 463 |
+
self.down_proj = nn.Linear(self.intermediate_dim, self.hidden_dim, bias=config.hidden_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
|
| 465 |
def forward(
|
| 466 |
self,
|
|
|
|
| 486 |
self.num_keys = int(math.sqrt(self.num_cdmmoe_experts))
|
| 487 |
|
| 488 |
# queries and keys for retrieval experts
|
| 489 |
+
self.queries = nn.Linear(self.hidden_dim, self.num_cdmmoe_heads * self.expert_retrieval_dim, bias=False)
|
| 490 |
+
self.keys = nn.Parameter(torch.zeros(self.num_cdmmoe_heads, self.num_keys, 2, self.expert_retrieval_dim // 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
|
| 492 |
# experts
|
| 493 |
+
self.down_embed = nn.Embedding(self.num_cdmmoe_experts, self.hidden_dim)
|
| 494 |
+
self.up_embed = nn.Embedding(self.num_cdmmoe_experts, self.hidden_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
|
| 496 |
def forward(
|
| 497 |
self,
|
|
|
|
| 534 |
super().__init__()
|
| 535 |
self.hidden_dropout = config.hidden_dropout
|
| 536 |
|
| 537 |
+
self.pre_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 538 |
+
self.self_attn = DOGE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 539 |
+
self.pre_residual = Residual(config.hidden_size)
|
| 540 |
|
| 541 |
+
self.post_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 542 |
self.feed_forward = DogeMLP(config) if config.is_moe == False else DogeCDMoE(config)
|
| 543 |
+
self.post_residual = Residual(config.hidden_size)
|
| 544 |
|
| 545 |
def forward(
|
| 546 |
self,
|
|
|
|
| 558 |
Args:
|
| 559 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 560 |
attention_mask (`torch.FloatTensor`, *optional*):
|
| 561 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used.
|
|
|
|
| 562 |
output_attentions (`bool`, *optional*):
|
| 563 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 564 |
+
See `attentions` under returned tensors for more detail.
|
| 565 |
use_cache (`bool`, *optional*):
|
| 566 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`).
|
|
|
|
| 567 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 568 |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 569 |
Indices depicting the position of the input sequence tokens in the sequence
|
| 570 |
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 571 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head.
|
|
|
|
| 572 |
kwargs (`dict`, *optional*):
|
| 573 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model
|
|
|
|
| 574 |
"""
|
| 575 |
|
| 576 |
# sequence transformation
|
| 577 |
residual = hidden_states
|
| 578 |
+
hidden_states = self.pre_layernorm(hidden_states)
|
| 579 |
+
hidden_states, present_key_value = self.self_attn(
|
| 580 |
hidden_states=hidden_states,
|
| 581 |
attention_mask=attention_mask,
|
| 582 |
position_ids=position_ids,
|
|
|
|
| 587 |
)
|
| 588 |
self_attn_weights = None
|
| 589 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 590 |
+
hidden_states = self.pre_residual(residual, hidden_states)
|
| 591 |
|
| 592 |
# state transformation
|
| 593 |
residual = hidden_states
|
| 594 |
+
hidden_states = self.post_layernorm(hidden_states)
|
| 595 |
hidden_states = self.feed_forward(hidden_states)
|
| 596 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 597 |
+
hidden_states = self.post_residual(residual, hidden_states)
|
| 598 |
|
| 599 |
outputs = (hidden_states,)
|
| 600 |
|
|
|
|
| 614 |
supports_gradient_checkpointing = True
|
| 615 |
_no_split_modules = ["DogeDecoderLayer"]
|
| 616 |
_skip_keys_device_placement = ["past_key_values"]
|
| 617 |
+
_supports_flex_attn = True
|
| 618 |
_supports_sdpa = True
|
| 619 |
_supports_cache_class = True
|
| 620 |
_supports_quantized_cache = True
|
|
|
|
| 635 |
DOGE_INPUTS_DOCSTRING = r"""
|
| 636 |
Args:
|
| 637 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 638 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
|
|
|
|
| 639 |
|
| 640 |
+
Indices can be obtained using [`AutoTokenizer`].
|
| 641 |
+
See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
| 642 |
|
| 643 |
[What are input IDs?](../glossary#input-ids)
|
| 644 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
| 649 |
|
| 650 |
[What are attention masks?](../glossary#attention-mask)
|
| 651 |
|
| 652 |
+
Indices can be obtained using [`AutoTokenizer`].
|
| 653 |
+
See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
| 654 |
|
| 655 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`).
|
|
|
|
| 656 |
|
| 657 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs.
|
| 658 |
+
See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
|
|
|
| 659 |
|
| 660 |
- 1 indicates the head is **not masked**,
|
| 661 |
- 0 indicates the head is **masked**.
|
| 662 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 663 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`.
|
|
|
|
| 664 |
|
| 665 |
[What are position IDs?](../glossary#position-ids)
|
| 666 |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 667 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding.
|
| 668 |
+
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
| 669 |
|
| 670 |
Two formats are allowed:
|
| 671 |
+
- a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 672 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format.
|
| 673 |
+
|
| 674 |
+
The model will output the same cache format that is fed as input.
|
| 675 |
+
If no `past_key_values` are passed, the legacy cache format will be returned.
|
| 676 |
+
|
| 677 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 679 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 680 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
|
|
|
| 681 |
use_cache (`bool`, *optional*):
|
| 682 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`).
|
|
|
|
| 683 |
output_attentions (`bool`, *optional*):
|
| 684 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 685 |
+
See `attentions` under returned tensors for more detail.
|
| 686 |
output_hidden_states (`bool`, *optional*):
|
| 687 |
+
Whether or not to return the hidden states of all layers.
|
| 688 |
+
See `hidden_states` under returned tensors for more detail.
|
| 689 |
return_dict (`bool`, *optional*):
|
| 690 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 691 |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 692 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding.
|
| 693 |
+
It is used to update the cache in the correct position and to infer the complete sequence length.
|
|
|
|
| 694 |
"""
|
| 695 |
|
| 696 |
|
|
|
|
| 761 |
else:
|
| 762 |
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 763 |
logger.warning_once(
|
| 764 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples."
|
| 765 |
+
"This is deprecated and will be removed in v4.47."
|
| 766 |
+
"Please convert your cache or use an appropriate `Cache` class (https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 767 |
)
|
| 768 |
|
| 769 |
if cache_position is None:
|
|
|
|
| 789 |
all_self_attns = () if output_attentions else None
|
| 790 |
next_decoder_cache = None
|
| 791 |
|
| 792 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 793 |
if output_hidden_states:
|
| 794 |
all_hidden_states += (hidden_states,)
|
| 795 |
|
|
|
|
| 892 |
**kwargs,
|
| 893 |
):
|
| 894 |
"""
|
| 895 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
| 896 |
|
| 897 |
Args:
|
| 898 |
attention_mask (`torch.Tensor`):
|
| 899 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
|
|
|
| 900 |
sequence_length (`int`):
|
| 901 |
The sequence length being processed.
|
| 902 |
target_length (`int`):
|
| 903 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
|
|
|
| 904 |
dtype (`torch.dtype`):
|
| 905 |
The dtype to use for the 4D attention mask.
|
| 906 |
device (`torch.device`):
|
|
|
|
| 959 |
|
| 960 |
def set_output_embeddings(self, new_embeddings):
|
| 961 |
self.lm_head = new_embeddings
|
| 962 |
+
|
| 963 |
+
def get_decoder(self):
|
| 964 |
+
return self.model
|
| 965 |
|
| 966 |
def set_decoder(self, decoder):
|
| 967 |
self.model = decoder
|
| 968 |
|
|
|
|
|
|
|
|
|
|
| 969 |
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 970 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 971 |
def forward(
|
|
|
|
| 973 |
input_ids: torch.LongTensor = None,
|
| 974 |
attention_mask: Optional[torch.Tensor] = None,
|
| 975 |
position_ids: Optional[torch.LongTensor] = None,
|
| 976 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 977 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 978 |
labels: Optional[torch.LongTensor] = None,
|
| 979 |
use_cache: Optional[bool] = None,
|
|
|
|
| 982 |
return_dict: Optional[bool] = None,
|
| 983 |
cache_position: Optional[torch.LongTensor] = None,
|
| 984 |
num_logits_to_keep: int = 0,
|
| 985 |
+
**kwargs,
|
| 986 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 987 |
r"""
|
| 988 |
Args:
|
| 989 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 990 |
+
Labels for computing the masked language modeling loss.
|
| 991 |
+
Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring).
|
| 992 |
+
Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 993 |
|
| 994 |
num_logits_to_keep (`int`, *optional*):
|
| 995 |
+
Calculate logits for the last `num_logits_to_keep` tokens.
|
| 996 |
+
If `0`, calculate logits for all `input_ids` (special case).
|
| 997 |
+
Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 998 |
|
| 999 |
Returns:
|
| 1000 |
"""
|
|
|
|
| 1016 |
output_hidden_states=output_hidden_states,
|
| 1017 |
return_dict=return_dict,
|
| 1018 |
cache_position=cache_position,
|
| 1019 |
+
**kwargs,
|
| 1020 |
)
|
| 1021 |
|
| 1022 |
hidden_states = outputs[0]
|
|
|
|
| 1026 |
|
| 1027 |
loss = None
|
| 1028 |
if labels is not None:
|
| 1029 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs)
|
| 1030 |
|
| 1031 |
if not return_dict:
|
| 1032 |
output = (logits,) + outputs[1:]
|
|
|
|
| 1041 |
)
|
| 1042 |
|
| 1043 |
|
| 1044 |
+
class DogePatchEmbedding(nn.Module):
|
| 1045 |
+
"""
|
| 1046 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` of shape `(batch_size, seq_len, hidden_size)` to be consumed by a Transformer.
|
| 1047 |
+
"""
|
| 1048 |
+
|
| 1049 |
+
def __init__(self, config: DogeConfig):
|
| 1050 |
+
super().__init__()
|
| 1051 |
+
|
| 1052 |
+
self.num_channels = config.num_channels
|
| 1053 |
+
self.patch_size = config.patch_size
|
| 1054 |
+
self.hidden_dim = config.hidden_size
|
| 1055 |
+
|
| 1056 |
+
self.sequence_proj = nn.Conv2d(self.num_channels, self.hidden_dim, kernel_size=self.patch_size, stride=self.patch_size)
|
| 1057 |
+
self.state_proj = nn.Linear(self.hidden_dim, self.hidden_dim, bias=config.hidden_bias)
|
| 1058 |
+
|
| 1059 |
+
def forward(
|
| 1060 |
+
self,
|
| 1061 |
+
pixel_values: torch.Tensor,
|
| 1062 |
+
) -> torch.Tensor:
|
| 1063 |
+
image_embedding = self.sequence_proj(pixel_values).flatten(2).transpose(1, 2)
|
| 1064 |
+
image_embedding = self.state_proj(image_embedding)
|
| 1065 |
+
return image_embedding
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
class DogeForCausalVLM(DogeForCausalLM):
|
| 1069 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1070 |
+
|
| 1071 |
+
def __init__(self, config: DogeConfig):
|
| 1072 |
+
super().__init__(config)
|
| 1073 |
+
self.config = config
|
| 1074 |
+
self.pixel_embed = DogePatchEmbedding(config)
|
| 1075 |
+
|
| 1076 |
+
# Initialize weights and apply final processing
|
| 1077 |
+
self.post_init()
|
| 1078 |
+
|
| 1079 |
+
def forward(
|
| 1080 |
+
self,
|
| 1081 |
+
input_ids: torch.LongTensor = None,
|
| 1082 |
+
pixel_values: torch.FloatTensor = None,
|
| 1083 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1084 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1085 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 1086 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1087 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1088 |
+
use_cache: Optional[bool] = None,
|
| 1089 |
+
output_attentions: Optional[bool] = None,
|
| 1090 |
+
output_hidden_states: Optional[bool] = None,
|
| 1091 |
+
return_dict: Optional[bool] = None,
|
| 1092 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1093 |
+
num_logits_to_keep: int = 0,
|
| 1094 |
+
**loss_kwargs,
|
| 1095 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1096 |
+
# TODO: @wubingheng111: refer to Llava for implementating the forward method
|
| 1097 |
+
...
|
| 1098 |
+
|
| 1099 |
+
def prepare_inputs_for_generation(
|
| 1100 |
+
self,
|
| 1101 |
+
input_ids=None,
|
| 1102 |
+
pixel_values=None,
|
| 1103 |
+
past_key_values=None,
|
| 1104 |
+
input_embeds=None,
|
| 1105 |
+
attention_mask=None,
|
| 1106 |
+
cache_position=None,
|
| 1107 |
+
num_logits_to_keep=None,
|
| 1108 |
+
**kwargs,
|
| 1109 |
+
):
|
| 1110 |
+
model_inputs = self.model.prepare_inputs_for_generation(
|
| 1111 |
+
input_ids,
|
| 1112 |
+
past_key_values=past_key_values,
|
| 1113 |
+
inputs_embeds=input_embeds,
|
| 1114 |
+
attention_mask=attention_mask,
|
| 1115 |
+
cache_position=cache_position,
|
| 1116 |
+
num_logits_to_keep=num_logits_to_keep,
|
| 1117 |
+
**kwargs,
|
| 1118 |
+
)
|
| 1119 |
+
|
| 1120 |
+
if cache_position[0] == 0:
|
| 1121 |
+
model_inputs["pixel_values"] = pixel_values
|
| 1122 |
+
|
| 1123 |
+
return model_inputs
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
@add_start_docstrings(
|
| 1127 |
"""
|
| 1128 |
The Doge Model transformer with a sequence classification head on top (linear layer).
|
| 1129 |
|
| 1130 |
+
[`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.
|
|
|
|
| 1131 |
|
| 1132 |
+
Since it does classification on the last token, it requires to know the position of the last token.
|
| 1133 |
+
If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
|
| 1134 |
+
If no `pad_token_id` is defined, it simply takes the last value in each row of the batch.
|
| 1135 |
+
Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch).
|
|
|
|
| 1136 |
"""
|
| 1137 |
)
|
| 1138 |
class DogeForSequenceClassification(DogePreTrainedModel):
|
|
|
|
| 1169 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1170 |
r"""
|
| 1171 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1172 |
+
Labels for computing the sequence classification/regression loss.
|
| 1173 |
+
Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1174 |
+
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1175 |
"""
|
| 1176 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1177 |
|