---
license: mit
datasets:
- Tesslate/Rust_Dataset
language:
- en
base_model:
- unsloth/phi-4-reasoning
pipeline_tag: text-generation
library_name: transformers
tags:
- Rust
- code
- text-generation-inference
- lora
- reasoning
- quantization
---
# 🧠Rust-Master-thinking
This repository contains a fine-tuned version of
[**unsloth/phi-4-reasoning**](https://huggingface.co/unsloth/phi-4-reasoning), trained with **LoRA** on the
[**Tesslate/Rust_Dataset**](https://huggingface.co/datasets/Tesslate/Rust_Dataset).
The goal of this project is to enhance the model's reasoning,
explanation, and step-by-step thinking abilities specifically for
**Rust-related tasks**.
## 🚀 Model Purpose
This model was fine-tuned to:
- Improve **Rust coding explanations**
- Generate **high-quality reasoning traces**
- Provide **step-by-step problem solving**
- Give **detailed and structured answers**
The training format follows:
<|user|>
{prompt}
<|assistant|>
{reasoning}
{response}
## 🔧 How to Use
### Install dependencies (if not installed):
```bash
pip install transformers bitsandbytes
```
### Load model normally:
``` python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "SkyAsl/Rust-Master-thinking"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, device_map="auto")
model.eval()
prompt = "Explain why Rust ownership prevents data races."
input_text = (
f"<|user|>\n{prompt}\n"
f"<|assistant|>\n\n"
)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
**inputs,
max_new_tokens=3000,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2,
)
print(tokenizer.decode(output[0], skip_special_tokens=False))
```
## 🧩 Base Model
**unsloth/phi-4-reasoning**
- 14B parameter reasoning-optimized model
- Uses internal `` reasoning
- Strong on step-by-step chain-of-thought tasks
## 🛠Fine-Tuning Details
| Setting | Value |
|----------------|-----------------------------------------|
| Method | LoRA (PEFT) |
| Rank (r) | 16 |
| Alpha | 32 |
| Dropout | 0.05 |
| Target Modules | q/k/v/o proj, mlp (up/down/gate) |
| Max Length | 512 |
| Precision | 4-bit QLoRA |
| Batch Size | 16 |
| Grad Accum | 8 |
| LR | 2e-4 |
| Scheduler | cosine |
| Epochs | 1 |
## 🤖 Evaluation
| Epoch | Training Loss | Validation Loss |
|-------|----------------|------------------|
| 1 | 2.251500 | 2.191743 |
## 📚 Dataset
**Tesslate/Rust_Dataset**
Includes:
- Rust prompts
- Step-by-step reasoning
- Final answers
This dataset improves the model's ability to produce structured and
accurate explanations for Rust programming tasks.