--- license: mit datasets: - Tesslate/Rust_Dataset language: - en base_model: - unsloth/phi-4-reasoning pipeline_tag: text-generation library_name: transformers tags: - Rust - code - text-generation-inference - lora - reasoning - quantization --- # 🧠 Rust-Master-thinking This repository contains a fine-tuned version of [**unsloth/phi-4-reasoning**](https://huggingface.co/unsloth/phi-4-reasoning), trained with **LoRA** on the [**Tesslate/Rust_Dataset**](https://huggingface.co/datasets/Tesslate/Rust_Dataset). The goal of this project is to enhance the model's reasoning, explanation, and step-by-step thinking abilities specifically for **Rust-related tasks**. ## 🚀 Model Purpose This model was fine-tuned to: - Improve **Rust coding explanations** - Generate **high-quality reasoning traces** - Provide **step-by-step problem solving** - Give **detailed and structured answers** The training format follows: <|user|> {prompt} <|assistant|> {reasoning} {response} ## 🔧 How to Use ### Install dependencies (if not installed): ```bash pip install transformers bitsandbytes ``` ### Load model normally: ``` python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "SkyAsl/Rust-Master-thinking" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, device_map="auto") model.eval() prompt = "Explain why Rust ownership prevents data races." input_text = ( f"<|user|>\n{prompt}\n" f"<|assistant|>\n\n" ) inputs = tokenizer(input_text, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( **inputs, max_new_tokens=3000, temperature=0.7, top_p=0.9, do_sample=True, repetition_penalty=1.2, ) print(tokenizer.decode(output[0], skip_special_tokens=False)) ``` ## 🧩 Base Model **unsloth/phi-4-reasoning** - 14B parameter reasoning-optimized model - Uses internal `` reasoning - Strong on step-by-step chain-of-thought tasks ## 🛠 Fine-Tuning Details | Setting | Value | |----------------|-----------------------------------------| | Method | LoRA (PEFT) | | Rank (r) | 16 | | Alpha | 32 | | Dropout | 0.05 | | Target Modules | q/k/v/o proj, mlp (up/down/gate) | | Max Length | 512 | | Precision | 4-bit QLoRA | | Batch Size | 16 | | Grad Accum | 8 | | LR | 2e-4 | | Scheduler | cosine | | Epochs | 1 | ## 🤖 Evaluation | Epoch | Training Loss | Validation Loss | |-------|----------------|------------------| | 1 | 2.251500 | 2.191743 | ## 📚 Dataset **Tesslate/Rust_Dataset** Includes: - Rust prompts - Step-by-step reasoning - Final answers This dataset improves the model's ability to produce structured and accurate explanations for Rust programming tasks.