Shengkun nielsr HF Staff commited on
Commit
f1b44a2
·
verified ·
1 Parent(s): 37c5dbf

Add library_name and pipeline_tag to metadata (#1)

Browse files

- Add library_name and pipeline_tag to metadata (2c97c27d5a6954039363fd0f9275ee45a1cdab58)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -1,6 +1,9 @@
1
  ---
2
  license: apache-2.0
 
 
3
  ---
 
4
  **Paper**: [https://arxiv.org/pdf/2502.07780](https://arxiv.org/pdf/2502.07780)
5
  **Code**: https://github.com/IST-DASLab/DarwinLM
6
  **Models**: [DarwinLM-2.7B](https://huggingface.co/Shengkun/DarwinLM-2.7B), [DarwinLM-4.6B](https://huggingface.co/Shengkun/DarwinLM-4.6B), [DarwinLM-8.4B](https://huggingface.co/Shengkun/DarwinLM-8.4B)
@@ -9,14 +12,13 @@ license: apache-2.0
9
  ---
10
 
11
  This repository contains the weights of DarwinLM, an evolutionary structured pruning methods for large language models, as introduced in our paper. DarwinLM builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival.
12
- ```
13
  # Please add trust_remote_code=True as the repo includes custom code to load and run DarwinLM
14
  model = AutoModelForCausalLM.from_pretrained("Shengkun/DarwinLM-8.4B-Pruned", trust_remote_code=True)
15
  ```
16
 
17
  ## Downstream Tasks
18
 
19
-
20
  **2.7B**
21
 
22
  | Method | Param. | SciQ | PIQA | WG | ArcE | ArcC | HS | LogiQA | BoolQ | Avg |
@@ -52,8 +54,6 @@ model = AutoModelForCausalLM.from_pretrained("Shengkun/DarwinLM-8.4B-Pruned", tr
52
  | | **OLMO-0424 (2.05T)** | 7B | 96.1 | 80.1 | 72.1 | 73.8 | 49.2 | 78.0 | 29.3 | 80.8 | 52.1 | 67.9 |
53
  | | *DarwinLM (10.0B)* | 8.4B | 89.5 | 78.1 | 70.7 | 79.6 | 57.6 | 74.9 | 33.5 | 73.9 | 57.9 | 68.4 |
54
 
55
-
56
-
57
  ## Bibtex
58
  ```
59
  @article{tang2025darwinlm,
 
1
  ---
2
  license: apache-2.0
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
  ---
6
+
7
  **Paper**: [https://arxiv.org/pdf/2502.07780](https://arxiv.org/pdf/2502.07780)
8
  **Code**: https://github.com/IST-DASLab/DarwinLM
9
  **Models**: [DarwinLM-2.7B](https://huggingface.co/Shengkun/DarwinLM-2.7B), [DarwinLM-4.6B](https://huggingface.co/Shengkun/DarwinLM-4.6B), [DarwinLM-8.4B](https://huggingface.co/Shengkun/DarwinLM-8.4B)
 
12
  ---
13
 
14
  This repository contains the weights of DarwinLM, an evolutionary structured pruning methods for large language models, as introduced in our paper. DarwinLM builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival.
15
+ ```python
16
  # Please add trust_remote_code=True as the repo includes custom code to load and run DarwinLM
17
  model = AutoModelForCausalLM.from_pretrained("Shengkun/DarwinLM-8.4B-Pruned", trust_remote_code=True)
18
  ```
19
 
20
  ## Downstream Tasks
21
 
 
22
  **2.7B**
23
 
24
  | Method | Param. | SciQ | PIQA | WG | ArcE | ArcC | HS | LogiQA | BoolQ | Avg |
 
54
  | | **OLMO-0424 (2.05T)** | 7B | 96.1 | 80.1 | 72.1 | 73.8 | 49.2 | 78.0 | 29.3 | 80.8 | 52.1 | 67.9 |
55
  | | *DarwinLM (10.0B)* | 8.4B | 89.5 | 78.1 | 70.7 | 79.6 | 57.6 | 74.9 | 33.5 | 73.9 | 57.9 | 68.4 |
56
 
 
 
57
  ## Bibtex
58
  ```
59
  @article{tang2025darwinlm,