nm-research commited on
Commit
1541725
·
verified ·
1 Parent(s): 7ec5743

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +197 -0
README.md CHANGED
@@ -266,3 +266,200 @@ evalplus.evaluate \
266
 
267
 
268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
267
 
268
 
269
+ ## Inference Performance
270
+
271
+
272
+ This model achieves up to 1.4x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
273
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
274
+
275
+ <details>
276
+ <summary>Benchmarking Command</summary>
277
+
278
+ ```
279
+ guidellm --model neuralmagic/granite-3.1-2b-base-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
280
+ ```
281
+
282
+ </details>
283
+
284
+
285
+ ### Single-stream performance (measured with vLLM version 0.6.6.post1)
286
+ <table>
287
+ <tr>
288
+ <td></td>
289
+ <td></td>
290
+ <td></td>
291
+ <th style="text-align: center;" colspan="7" >Latency (s)</th>
292
+ </tr>
293
+ <tr>
294
+ <th>GPU class</th>
295
+ <th>Model</th>
296
+ <th>Speedup</th>
297
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
298
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
299
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
300
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
301
+ <th>baseion Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
302
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
303
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
304
+ </tr>
305
+ <tr>
306
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
307
+ <td>granite-3.1-2b-base</td>
308
+ <td></td>
309
+ <td>10.9</td>
310
+ <td>1.4</td>
311
+ <td>11.0</td>
312
+ <td>1.5</td>
313
+ <td>1.4</td>
314
+ <td>2.8</td>
315
+ <td>6.1</td>
316
+ </tr>
317
+ <tr>
318
+ <td>granite-3.1-2b-base-quantized.w8a8<br>(this model)</td>
319
+ <td>1.37</td>
320
+ <td>7.9</td>
321
+ <td>1.0</td>
322
+ <td>8.0</td>
323
+ <td>1.1</td>
324
+ <td>1.0</td>
325
+ <td>2.0</td>
326
+ <td>4.7</td>
327
+ </tr>
328
+ <tr>
329
+ <td>granite-3.1-2b-base-quantized.w4a16</td>
330
+ <td>1.94</td>
331
+ <td>5.4</td>
332
+ <td>0.7</td>
333
+ <td>5.5</td>
334
+ <td>0.8</td>
335
+ <td>0.7</td>
336
+ <td>1.4</td>
337
+ <td>3.4</td>
338
+ </tr>
339
+ <tr>
340
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
341
+ <td>granite-3.1-2b-base</td>
342
+ <td></td>
343
+ <td>9.8</td>
344
+ <td>1.3</td>
345
+ <td>10.0</td>
346
+ <td>1.3</td>
347
+ <td>1.3</td>
348
+ <td>2.6</td>
349
+ <td>5.4</td>
350
+ </tr>
351
+ <tr>
352
+ <td>granite-3.1-2b-base-quantized.w8a8<br>(this model)</td>
353
+ <td>1.31</td>
354
+ <td>7.8</td>
355
+ <td>1.0</td>
356
+ <td>7.6</td>
357
+ <td>1.0</td>
358
+ <td>0.9</td>
359
+ <td>1.9</td>
360
+ <td>4.5</td>
361
+ </tr>
362
+ <tr>
363
+ <td>granite-3.1-2b-base-quantized.w4a16</td>
364
+ <td>1.87</td>
365
+ <td>5.1</td>
366
+ <td>0.7</td>
367
+ <td>5.2</td>
368
+ <td>0.7</td>
369
+ <td>0.7</td>
370
+ <td>1.3</td>
371
+ <td>3.1</td>
372
+ </tr>
373
+ </table>
374
+
375
+
376
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
377
+ <table>
378
+ <tr>
379
+ <td></td>
380
+ <td></td>
381
+ <td></td>
382
+ <th style="text-align: center;" colspan="7" >Maximum Throughput (Queries per Second)</th>
383
+ </tr>
384
+ <tr>
385
+ <th>GPU class</th>
386
+ <th>Model</th>
387
+ <th>Speedup</th>
388
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
389
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
390
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
391
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
392
+ <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
393
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
394
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
395
+ </tr>
396
+ <tr>
397
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
398
+ <td>granite-3.1-2b-base</td>
399
+ <td></td>
400
+ <td>2.9</td>
401
+ <td>10.2</td>
402
+ <td>1.8</td>
403
+ <td>8.2</td>
404
+ <td>19.3</td>
405
+ <td>9.1</td>
406
+ <td>1.3</td>
407
+ </tr>
408
+ <tr>
409
+ <td>granite-3.1-2b-base-quantized.w8a8<br>(this model)</td>
410
+ <td>1.13</td>
411
+ <td>3.1</td>
412
+ <td>12.1</td>
413
+ <td>2.0</td>
414
+ <td>9.6</td>
415
+ <td>22.2</td>
416
+ <td>10.2</td>
417
+ <td>1.4</td>
418
+ </tr>
419
+ <tr>
420
+ <td>granite-3.1-2b-base-quantized.w4a16</td>
421
+ <td>0.98</td>
422
+ <td>2.8</td>
423
+ <td>10.0</td>
424
+ <td>1.8</td>
425
+ <td>8.1</td>
426
+ <td>18.6</td>
427
+ <td>9.0</td>
428
+ <td>1.2</td>
429
+ </tr>
430
+ <tr>
431
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
432
+ <td>granite-3.1-2b-base</td>
433
+ <td></td>
434
+ <td>3.7</td>
435
+ <td>12.4</td>
436
+ <td>2.4</td>
437
+ <td>10.3</td>
438
+ <td>23.6</td>
439
+ <td>11.0</td>
440
+ <td>1.6</td>
441
+ </tr>
442
+ <tr>
443
+ <td>granite-3.1-2b-base-quantized.w8a8<br>(this model)</td>
444
+ <td>1.12</td>
445
+ <td>3.6</td>
446
+ <td>14.4</td>
447
+ <td>2.7</td>
448
+ <td>12.0</td>
449
+ <td>28.3</td>
450
+ <td>12.9</td>
451
+ <td>1.7</td>
452
+ </tr>
453
+ <tr>
454
+ <td>granite-3.1-2b-base-quantized.w4a16</td>
455
+ <td>0.95</td>
456
+ <td>3.7</td>
457
+ <td>11.4</td>
458
+ <td>2.5</td>
459
+ <td>9.8</td>
460
+ <td>22.1</td>
461
+ <td>10.4</td>
462
+ <td>1.4</td>
463
+ </tr>
464
+ </table>
465
+