upload CondRef-AR model
Browse files- .gitattributes +5 -0
- CondRefAR/models/dinov2_adapter.py +36 -0
- CondRefAR/models/generate.py +205 -0
- CondRefAR/models/gpt_t2i.py +588 -0
- CondRefAR/pipeline.py +112 -0
- CondRefAR/tokenizer/vq_model.py +425 -0
- CondRefAR/utils/drop_path.py +36 -0
- README.md +75 -0
- app.py +100 -0
- assets/aerial_img.gif +3 -0
- assets/control_img.gif +3 -0
- assets/evolution.png +3 -0
- assets/examples/example1.jpg +0 -0
- assets/examples/example2.jpg +0 -0
- assets/method.jpg +3 -0
- assets/samples.png +3 -0
- configs/gpt_config.json +12 -0
- configs/vq_config.json +9 -0
- requirements.txt +7 -0
- sample.py +26 -0
- weights/sketch-gpt-xl.safetensors +3 -0
- weights/vq-16.safetensors +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/aerial_img.gif filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
assets/control_img.gif filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
assets/evolution.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
assets/method.jpg filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
assets/samples.png filter=lfs diff=lfs merge=lfs -text
|
CondRefAR/models/dinov2_adapter.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Dinov2_Adapter(nn.Module):
|
| 9 |
+
def __init__(self, input_dim=1, output_dim=768, attention=False, pool=False, nheads=8, dropout=0.1, adapter_size='small', condition_type='canny'):
|
| 10 |
+
super(Dinov2_Adapter, self).__init__()
|
| 11 |
+
print(f"Choose adapter size: {adapter_size}")
|
| 12 |
+
print(f"condition type: {condition_type}")
|
| 13 |
+
self.model = AutoModel.from_pretrained('D:\\Alps\\Aerial\\Code\\ControlRAR\\checkpoints\\dinov2\\')
|
| 14 |
+
self.condition_type = condition_type
|
| 15 |
+
|
| 16 |
+
def to_patch14(self, input):
|
| 17 |
+
H, W = input.shape[2:]
|
| 18 |
+
new_H = (H // 16) * 14
|
| 19 |
+
new_W = (W // 16) * 14
|
| 20 |
+
if self.condition_type in ['canny', 'seg']:
|
| 21 |
+
output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='nearest')#, align_corners=True) canny, seg
|
| 22 |
+
else:
|
| 23 |
+
output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='bicubic', align_corners=True) # depth, lineart, hed
|
| 24 |
+
return output
|
| 25 |
+
|
| 26 |
+
def forward(self, x):
|
| 27 |
+
x = self.to_patch14(x)
|
| 28 |
+
x = self.model(x)
|
| 29 |
+
return x.last_hidden_state[:, 1:]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
if __name__ == '__main__':
|
| 33 |
+
model = Dinov2_Adapter().cuda()
|
| 34 |
+
inputs = torch.randn(4,3,512,512).cuda()
|
| 35 |
+
outputs = model(inputs)
|
| 36 |
+
print(outputs.shape)
|
CondRefAR/models/generate.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
|
| 3 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
import torch._dynamo.config
|
| 8 |
+
import torch._inductor.config
|
| 9 |
+
import copy
|
| 10 |
+
import time
|
| 11 |
+
import pdb
|
| 12 |
+
# torch._inductor.config.coordinate_descent_tuning = True
|
| 13 |
+
# torch._inductor.config.triton.unique_kernel_names = True
|
| 14 |
+
# torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
|
| 18 |
+
def top_k_top_p_filtering(
|
| 19 |
+
logits,
|
| 20 |
+
top_k: int = 0,
|
| 21 |
+
top_p: float = 1.0,
|
| 22 |
+
filter_value: float = -float("Inf"),
|
| 23 |
+
min_tokens_to_keep: int = 1,
|
| 24 |
+
):
|
| 25 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
| 26 |
+
Args:
|
| 27 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
| 28 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
| 29 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
| 30 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
| 31 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
| 32 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
| 33 |
+
"""
|
| 34 |
+
if top_k > 0:
|
| 35 |
+
# import pdb;pdb.set_trace()
|
| 36 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
| 37 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
| 38 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 39 |
+
logits[indices_to_remove] = filter_value
|
| 40 |
+
|
| 41 |
+
if top_p < 1.0:
|
| 42 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 43 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 44 |
+
|
| 45 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
| 46 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 47 |
+
if min_tokens_to_keep > 1:
|
| 48 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
| 49 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
| 50 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
| 51 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 52 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 53 |
+
|
| 54 |
+
# scatter sorted tensors to original indexing
|
| 55 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 56 |
+
logits[indices_to_remove] = filter_value
|
| 57 |
+
return logits
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def sample(logits, temperature: float=1.0, top_k: int=2000, top_p: float=1.0, sample_logits=True):
|
| 61 |
+
logits = logits[:, -1, :] / max(temperature, 1e-5)
|
| 62 |
+
if top_k > 0 or top_p < 1.0:
|
| 63 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 64 |
+
probs = F.softmax(logits, dim=-1)
|
| 65 |
+
# values, indices = torch.max(probs, dim=1, keepdim=True)
|
| 66 |
+
# mask = (probs == values).float()
|
| 67 |
+
# probs = probs * (1 - mask)
|
| 68 |
+
# values, indices = torch.max(probs, dim=1, keepdim=True)
|
| 69 |
+
# mask = (probs == values).float()
|
| 70 |
+
# probs = probs * (1 - mask)
|
| 71 |
+
if sample_logits:
|
| 72 |
+
idx = torch.multinomial(probs, num_samples=1)
|
| 73 |
+
else:
|
| 74 |
+
_, idx = torch.topk(probs, k=1, dim=-1)
|
| 75 |
+
return idx, probs
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def logits_to_probs(logits, temperature: float = 1.0, top_p: float=1.0, top_k: int = None, **kwargs):
|
| 79 |
+
logits = logits / max(temperature, 1e-5)
|
| 80 |
+
if top_k > 0 or top_p < 1.0:
|
| 81 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 82 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 83 |
+
return probs
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def prefill(model, cond_idx: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, condition:torch.Tensor, control_strength: float=1, **sampling_kwargs):
|
| 87 |
+
if cfg_scale > 1.0:
|
| 88 |
+
logits, _ = model(None, cond_idx, input_pos, condition=condition, control_strength=control_strength)
|
| 89 |
+
logits_combined = logits
|
| 90 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 91 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
| 92 |
+
else:
|
| 93 |
+
logits, _ = model(None, cond_idx, input_pos, condition=condition)
|
| 94 |
+
|
| 95 |
+
return sample(logits, **sampling_kwargs)[0]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def decode_one_token(model, x: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, cfg_flag: bool, condition: torch.Tensor, **sampling_kwargs):
|
| 99 |
+
assert input_pos.shape[-1] == 1
|
| 100 |
+
if cfg_scale > 1.0:
|
| 101 |
+
x_combined = torch.cat([x, x])
|
| 102 |
+
logits, _ = model(x_combined, cond_idx=None, input_pos=input_pos, condition=condition)
|
| 103 |
+
logits_combined = logits
|
| 104 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 105 |
+
if cfg_flag:
|
| 106 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
| 107 |
+
else:
|
| 108 |
+
logits = cond_logits
|
| 109 |
+
else:
|
| 110 |
+
logits, _ = model(x, cond_idx=None, input_pos=input_pos, condition=None)
|
| 111 |
+
return sample(logits, **sampling_kwargs)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def decode_n_tokens(
|
| 115 |
+
model, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int,
|
| 116 |
+
cfg_scale: float, cfg_interval: int, condition: torch.Tensor,
|
| 117 |
+
**sampling_kwargs):
|
| 118 |
+
new_tokens, new_probs = [], []
|
| 119 |
+
cfg_flag = True
|
| 120 |
+
for i in range(num_new_tokens):
|
| 121 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
|
| 122 |
+
if cfg_interval > -1 and i > cfg_interval:
|
| 123 |
+
cfg_flag = False
|
| 124 |
+
next_token, next_prob = decode_one_token(
|
| 125 |
+
model, cur_token, input_pos, cfg_scale, cfg_flag, condition=condition, **sampling_kwargs
|
| 126 |
+
)
|
| 127 |
+
input_pos += 1
|
| 128 |
+
new_tokens.append(next_token.clone())
|
| 129 |
+
new_probs.append(next_prob.clone())
|
| 130 |
+
cur_token = next_token.view(-1, 1)
|
| 131 |
+
|
| 132 |
+
return new_tokens, new_probs
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
@torch.no_grad()
|
| 136 |
+
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, control_strength=1, **sampling_kwargs):
|
| 137 |
+
if condition is not None:
|
| 138 |
+
condition = model.adapter(condition)
|
| 139 |
+
condition = model.adapter_mlp(condition)
|
| 140 |
+
if model.model_type == 'c2i':
|
| 141 |
+
if cfg_scale > 1.0:
|
| 142 |
+
cond_null = torch.ones_like(cond) * model.num_classes
|
| 143 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 144 |
+
if condition is not None:
|
| 145 |
+
condition_null = torch.zeros_like(condition)
|
| 146 |
+
condition_combined = torch.cat((condition, condition_null), dim=0)
|
| 147 |
+
else:
|
| 148 |
+
condition_combined = None
|
| 149 |
+
else:
|
| 150 |
+
cond_combined = cond
|
| 151 |
+
if condition is not None:
|
| 152 |
+
condition_combined = condition
|
| 153 |
+
else:
|
| 154 |
+
condition_combined = None
|
| 155 |
+
T = 1+condition_token_nums
|
| 156 |
+
elif model.model_type == 't2i':
|
| 157 |
+
if cfg_scale > 1.0:
|
| 158 |
+
cond_null = torch.zeros_like(cond) + model.cls_embedding.uncond_embedding
|
| 159 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 160 |
+
|
| 161 |
+
if condition is not None:
|
| 162 |
+
condition_null = torch.zeros_like(condition)
|
| 163 |
+
condition_combined = torch.cat((condition, condition_null), dim=0)
|
| 164 |
+
else:
|
| 165 |
+
condition_combined = None
|
| 166 |
+
else:
|
| 167 |
+
cond_combined = cond
|
| 168 |
+
if condition is not None:
|
| 169 |
+
condition_combined = condition
|
| 170 |
+
else:
|
| 171 |
+
condition_combined = None
|
| 172 |
+
T = cond.shape[1]
|
| 173 |
+
else:
|
| 174 |
+
raise Exception("please check model type")
|
| 175 |
+
|
| 176 |
+
T_new = T + max_new_tokens
|
| 177 |
+
max_seq_length = T_new
|
| 178 |
+
max_batch_size = cond.shape[0]
|
| 179 |
+
|
| 180 |
+
device = cond.device
|
| 181 |
+
with torch.device(device):
|
| 182 |
+
max_batch_size_cfg = max_batch_size * 2 if cfg_scale > 1.0 else max_batch_size
|
| 183 |
+
model.setup_caches(max_batch_size=max_batch_size_cfg, max_seq_length=max_seq_length, dtype=model.tok_embeddings.weight.dtype)
|
| 184 |
+
|
| 185 |
+
if emb_masks is not None:
|
| 186 |
+
assert emb_masks.shape[0] == max_batch_size
|
| 187 |
+
assert emb_masks.shape[-1] == T
|
| 188 |
+
if cfg_scale > 1.0:
|
| 189 |
+
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * torch.cat([emb_masks, emb_masks]).unsqueeze(1)
|
| 190 |
+
else:
|
| 191 |
+
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * emb_masks.unsqueeze(1)
|
| 192 |
+
|
| 193 |
+
eye_matrix = torch.eye(model.causal_mask.size(1), model.causal_mask.size(2), device=device)
|
| 194 |
+
model.causal_mask[:] = model.causal_mask * (1 - eye_matrix) + eye_matrix
|
| 195 |
+
|
| 196 |
+
# create an empty tensor of the expected final shape and fill in the current tokens
|
| 197 |
+
seq = torch.empty((max_batch_size, T_new), dtype=torch.int, device=device)
|
| 198 |
+
input_pos = torch.arange(0, T, device=device)
|
| 199 |
+
next_token = prefill(model, cond_combined, input_pos, cfg_scale, condition_combined, control_strength, **sampling_kwargs)
|
| 200 |
+
seq[:, T:T+1] = next_token
|
| 201 |
+
|
| 202 |
+
input_pos = torch.tensor([T], device=device, dtype=torch.int)
|
| 203 |
+
generated_tokens, _ = decode_n_tokens(model, next_token, input_pos, max_new_tokens-1, cfg_scale, cfg_interval, condition=condition_combined, **sampling_kwargs)
|
| 204 |
+
seq[:, T+1:] = torch.cat(generated_tokens, dim=1)
|
| 205 |
+
return seq[:, T:]
|
CondRefAR/models/gpt_t2i.py
ADDED
|
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py
|
| 3 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 4 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 5 |
+
# llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py
|
| 6 |
+
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 7 |
+
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional, List
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from torch.nn import functional as F
|
| 15 |
+
from ..utils.drop_path import DropPath
|
| 16 |
+
from .dinov2_adapter import Dinov2_Adapter
|
| 17 |
+
|
| 18 |
+
def get_causal_mask(seq_length):
|
| 19 |
+
mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool)
|
| 20 |
+
mask = mask.masked_fill(mask, float('-inf'))
|
| 21 |
+
mask = mask.masked_fill(~mask, float(0.0))
|
| 22 |
+
return mask
|
| 23 |
+
|
| 24 |
+
def find_multiple(n: int, k: int):
|
| 25 |
+
if n % k == 0:
|
| 26 |
+
return n
|
| 27 |
+
return n + k - (n % k)
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class ModelArgs:
|
| 31 |
+
dim: int = 4096
|
| 32 |
+
n_layer: int = 32
|
| 33 |
+
n_head: int = 32
|
| 34 |
+
n_kv_head: Optional[int] = None
|
| 35 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
| 36 |
+
ffn_dim_multiplier: Optional[float] = None
|
| 37 |
+
rope_base: float = 10000
|
| 38 |
+
norm_eps: float = 1e-5
|
| 39 |
+
initializer_range: float = 0.02
|
| 40 |
+
|
| 41 |
+
token_dropout_p: float = 0.1
|
| 42 |
+
attn_dropout_p: float = 0.0
|
| 43 |
+
resid_dropout_p: float = 0.1
|
| 44 |
+
ffn_dropout_p: float = 0.1
|
| 45 |
+
drop_path_rate: float = 0.0
|
| 46 |
+
|
| 47 |
+
num_classes: int = 1000
|
| 48 |
+
caption_dim: int = 2048
|
| 49 |
+
class_dropout_prob: float = 0.1
|
| 50 |
+
model_type: str = 'c2i'
|
| 51 |
+
|
| 52 |
+
vocab_size: int = 16384
|
| 53 |
+
cls_token_num: int = 1
|
| 54 |
+
block_size: int = 256
|
| 55 |
+
max_batch_size: int = 32
|
| 56 |
+
max_seq_len: int = 2048
|
| 57 |
+
adapter_size: str = 'small'
|
| 58 |
+
condition_type: str = 'canny'
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
#################################################################################
|
| 63 |
+
# Embedding Layers for Class Labels #
|
| 64 |
+
#################################################################################
|
| 65 |
+
class LabelEmbedder(nn.Module):
|
| 66 |
+
"""
|
| 67 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
| 68 |
+
"""
|
| 69 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 70 |
+
super().__init__()
|
| 71 |
+
use_cfg_embedding = dropout_prob > 0
|
| 72 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 73 |
+
self.num_classes = num_classes
|
| 74 |
+
self.dropout_prob = dropout_prob
|
| 75 |
+
|
| 76 |
+
def token_drop(self, labels, force_drop_ids=None):
|
| 77 |
+
"""
|
| 78 |
+
Drops labels to enable classifier-free guidance.
|
| 79 |
+
"""
|
| 80 |
+
if force_drop_ids is None:
|
| 81 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 82 |
+
else:
|
| 83 |
+
drop_ids = force_drop_ids == 1
|
| 84 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
| 85 |
+
return labels, drop_ids
|
| 86 |
+
|
| 87 |
+
def forward(self, labels, train, force_drop_ids=None):
|
| 88 |
+
use_dropout = self.dropout_prob > 0
|
| 89 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 90 |
+
labels,drop_ids = self.token_drop(labels, force_drop_ids)
|
| 91 |
+
embeddings = self.embedding_table(labels).unsqueeze(1)
|
| 92 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 93 |
+
return embeddings,drop_ids
|
| 94 |
+
else:
|
| 95 |
+
return embeddings
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class ConditionEmbedder(nn.Module):
|
| 99 |
+
"""
|
| 100 |
+
Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance.
|
| 101 |
+
"""
|
| 102 |
+
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size)
|
| 105 |
+
self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5)
|
| 106 |
+
self.uncond_prob = uncond_prob
|
| 107 |
+
|
| 108 |
+
def token_drop(self, caption, force_drop_ids=None, drop_ids=None):
|
| 109 |
+
"""
|
| 110 |
+
Drops labels to enable classifier-free guidance.
|
| 111 |
+
"""
|
| 112 |
+
if force_drop_ids is None:
|
| 113 |
+
if drop_ids is None:
|
| 114 |
+
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
|
| 115 |
+
else:
|
| 116 |
+
drop_ids = force_drop_ids == 1
|
| 117 |
+
|
| 118 |
+
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding[:caption.shape[1]], caption)
|
| 119 |
+
return caption
|
| 120 |
+
|
| 121 |
+
def forward(self, caption, train, force_drop_ids=None, drop_ids=None):
|
| 122 |
+
use_dropout = self.uncond_prob > 0
|
| 123 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 124 |
+
caption = self.token_drop(caption, force_drop_ids, drop_ids)
|
| 125 |
+
embeddings = self.cap_proj(caption)
|
| 126 |
+
return embeddings
|
| 127 |
+
|
| 128 |
+
#################################################################################
|
| 129 |
+
# Embedding Layers for Text Feature #
|
| 130 |
+
#################################################################################
|
| 131 |
+
class CaptionEmbedder(nn.Module):
|
| 132 |
+
"""
|
| 133 |
+
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance.
|
| 134 |
+
"""
|
| 135 |
+
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120):
|
| 136 |
+
super().__init__()
|
| 137 |
+
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size)
|
| 138 |
+
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
|
| 139 |
+
self.uncond_prob = uncond_prob
|
| 140 |
+
|
| 141 |
+
def token_drop(self, caption, force_drop_ids=None):
|
| 142 |
+
"""
|
| 143 |
+
Drops labels to enable classifier-free guidance.
|
| 144 |
+
"""
|
| 145 |
+
if force_drop_ids is None:
|
| 146 |
+
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
|
| 147 |
+
else:
|
| 148 |
+
drop_ids = force_drop_ids == 1
|
| 149 |
+
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption)
|
| 150 |
+
return caption, drop_ids
|
| 151 |
+
|
| 152 |
+
def forward(self, caption, train, force_drop_ids=None):
|
| 153 |
+
use_dropout = self.uncond_prob > 0
|
| 154 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 155 |
+
caption, drop_ids = self.token_drop(caption, force_drop_ids)
|
| 156 |
+
embeddings = self.cap_proj(caption)
|
| 157 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 158 |
+
return embeddings, drop_ids
|
| 159 |
+
else:
|
| 160 |
+
return embeddings
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class MLP(nn.Module):
|
| 164 |
+
def __init__(self, in_features, hidden_features, out_features):
|
| 165 |
+
super().__init__()
|
| 166 |
+
out_features = out_features or in_features
|
| 167 |
+
hidden_features = hidden_features or in_features
|
| 168 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
|
| 169 |
+
self.act = nn.GELU(approximate='tanh')
|
| 170 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 171 |
+
|
| 172 |
+
nn.init.zeros_(self.fc1.weight)
|
| 173 |
+
nn.init.zeros_(self.fc2.weight)
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
x = self.fc1(x)
|
| 177 |
+
x = self.act(x)
|
| 178 |
+
x = self.fc2(x)
|
| 179 |
+
return x
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
#################################################################################
|
| 183 |
+
# GPT Model #
|
| 184 |
+
#################################################################################
|
| 185 |
+
class RMSNorm(torch.nn.Module):
|
| 186 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
| 187 |
+
super().__init__()
|
| 188 |
+
self.eps = eps
|
| 189 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 190 |
+
|
| 191 |
+
def _norm(self, x):
|
| 192 |
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 193 |
+
|
| 194 |
+
def forward(self, x):
|
| 195 |
+
output = self._norm(x.float()).type_as(x)
|
| 196 |
+
return output * self.weight
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class FeedForward(nn.Module):
|
| 200 |
+
def __init__(self, config: ModelArgs):
|
| 201 |
+
super().__init__()
|
| 202 |
+
hidden_dim = 4 * config.dim
|
| 203 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 204 |
+
# custom dim factor multiplier
|
| 205 |
+
if config.ffn_dim_multiplier is not None:
|
| 206 |
+
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
|
| 207 |
+
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
|
| 208 |
+
|
| 209 |
+
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 210 |
+
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 211 |
+
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
|
| 212 |
+
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
|
| 213 |
+
|
| 214 |
+
def forward(self, x):
|
| 215 |
+
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class KVCache(nn.Module):
|
| 219 |
+
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
|
| 220 |
+
super().__init__()
|
| 221 |
+
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
|
| 222 |
+
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 223 |
+
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 224 |
+
|
| 225 |
+
def update(self, input_pos, k_val, v_val):
|
| 226 |
+
# input_pos: [S], k_val: [B, H, S, D]
|
| 227 |
+
assert input_pos.shape[0] == k_val.shape[2]
|
| 228 |
+
k_out = self.k_cache
|
| 229 |
+
v_out = self.v_cache
|
| 230 |
+
k_out[:, :, input_pos] = k_val
|
| 231 |
+
v_out[:, :, input_pos] = v_val
|
| 232 |
+
|
| 233 |
+
return k_out, v_out
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class Attention(nn.Module):
|
| 237 |
+
def __init__(self, config: ModelArgs):
|
| 238 |
+
super().__init__()
|
| 239 |
+
assert config.dim % config.n_head == 0
|
| 240 |
+
self.dim = config.dim
|
| 241 |
+
self.head_dim = config.dim // config.n_head
|
| 242 |
+
self.n_head = config.n_head
|
| 243 |
+
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
|
| 244 |
+
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
|
| 245 |
+
|
| 246 |
+
# key, query, value projections for all heads, but in a batch
|
| 247 |
+
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
|
| 248 |
+
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
| 249 |
+
self.kv_cache = None
|
| 250 |
+
|
| 251 |
+
# regularization
|
| 252 |
+
self.attn_dropout_p = config.attn_dropout_p
|
| 253 |
+
self.resid_dropout = nn.Dropout(config.resid_dropout_p)
|
| 254 |
+
|
| 255 |
+
def forward(
|
| 256 |
+
self, x: torch.Tensor, freqs_cis: torch.Tensor = None,
|
| 257 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 258 |
+
mask: Optional[torch.Tensor] = None
|
| 259 |
+
):
|
| 260 |
+
bsz, seqlen, _ = x.shape
|
| 261 |
+
kv_size = self.n_kv_head * self.head_dim
|
| 262 |
+
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
| 263 |
+
|
| 264 |
+
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 265 |
+
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 266 |
+
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 267 |
+
|
| 268 |
+
xq = apply_rotary_emb(xq, freqs_cis)
|
| 269 |
+
xk = apply_rotary_emb(xk, freqs_cis)
|
| 270 |
+
|
| 271 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 272 |
+
|
| 273 |
+
if self.kv_cache is not None:
|
| 274 |
+
keys, values = self.kv_cache.update(input_pos, xk, xv)
|
| 275 |
+
else:
|
| 276 |
+
keys, values = xk, xv
|
| 277 |
+
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 278 |
+
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 279 |
+
|
| 280 |
+
output = F.scaled_dot_product_attention(
|
| 281 |
+
xq, keys, values,
|
| 282 |
+
attn_mask=mask,
|
| 283 |
+
is_causal=True if mask is None else False, # is_causal=False is for KV cache
|
| 284 |
+
dropout_p=self.attn_dropout_p if self.training else 0)
|
| 285 |
+
|
| 286 |
+
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
| 287 |
+
|
| 288 |
+
output = self.resid_dropout(self.wo(output))
|
| 289 |
+
return output
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class TransformerBlock(nn.Module):
|
| 293 |
+
def __init__(self, config: ModelArgs, drop_path: float):
|
| 294 |
+
super().__init__()
|
| 295 |
+
self.attention = Attention(config)
|
| 296 |
+
self.feed_forward = FeedForward(config)
|
| 297 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 298 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 299 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 300 |
+
|
| 301 |
+
def forward(
|
| 302 |
+
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
|
| 303 |
+
h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask))
|
| 304 |
+
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
|
| 305 |
+
return out
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class Transformer(nn.Module):
|
| 309 |
+
def __init__(self, config: ModelArgs):
|
| 310 |
+
super().__init__()
|
| 311 |
+
self.config = config
|
| 312 |
+
self.vocab_size = config.vocab_size
|
| 313 |
+
self.n_layer = config.n_layer
|
| 314 |
+
self.block_size = config.block_size
|
| 315 |
+
self.num_classes = config.num_classes
|
| 316 |
+
self.model_type = config.model_type
|
| 317 |
+
self.cls_token_num = config.cls_token_num
|
| 318 |
+
self.layer_internal = config.n_layer // 3
|
| 319 |
+
# self.adapter = Adapter(output_dim=768)
|
| 320 |
+
# self.adapter = ViT_Adapter()
|
| 321 |
+
# self.adapter = DeiT_Adapter()
|
| 322 |
+
self.adapter = Dinov2_Adapter(adapter_size=config.adapter_size, condition_type=config.condition_type)
|
| 323 |
+
# self.adapter = EVA_Adapter()
|
| 324 |
+
if config.adapter_size == "small":
|
| 325 |
+
self.adapter_mlp = MLP(384, config.dim, config.dim)
|
| 326 |
+
elif config.adapter_size == 'base':
|
| 327 |
+
self.adapter_mlp = MLP(768, config.dim, config.dim)
|
| 328 |
+
|
| 329 |
+
if self.model_type == 'c2i':
|
| 330 |
+
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
|
| 331 |
+
elif self.model_type == 't2i':
|
| 332 |
+
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob)
|
| 333 |
+
else:
|
| 334 |
+
raise Exception("please check model type")
|
| 335 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 336 |
+
self.tok_dropout = nn.Dropout(config.token_dropout_p)
|
| 337 |
+
|
| 338 |
+
self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 339 |
+
self.condition_mlp = ConditionEmbedder(self.block_size, config.dim, config.class_dropout_prob, self.block_size, config.vocab_size)
|
| 340 |
+
self.condition_layers = torch.nn.ModuleList()
|
| 341 |
+
for layer_id in range(3):
|
| 342 |
+
self.condition_layers.append(MLP(config.dim,config.dim,config.dim))
|
| 343 |
+
|
| 344 |
+
# transformer blocks
|
| 345 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
|
| 346 |
+
self.layers = torch.nn.ModuleList()
|
| 347 |
+
for layer_id in range(config.n_layer):
|
| 348 |
+
self.layers.append(TransformerBlock(config, dpr[layer_id]))
|
| 349 |
+
|
| 350 |
+
# output layer
|
| 351 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 352 |
+
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
|
| 353 |
+
|
| 354 |
+
# 2d rotary pos embedding
|
| 355 |
+
grid_size = int(self.block_size ** 0.5)
|
| 356 |
+
assert grid_size * grid_size == self.block_size
|
| 357 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
|
| 358 |
+
|
| 359 |
+
# KVCache
|
| 360 |
+
self.max_batch_size = -1
|
| 361 |
+
self.max_seq_length = -1
|
| 362 |
+
|
| 363 |
+
self.initialize_weights()
|
| 364 |
+
self.condition_token = None
|
| 365 |
+
self.mask = get_causal_mask(256)
|
| 366 |
+
self.global_token = None
|
| 367 |
+
|
| 368 |
+
self.control_strength = 1
|
| 369 |
+
|
| 370 |
+
def initialize_weights(self):
|
| 371 |
+
# Initialize nn.Linear and nn.Embedding
|
| 372 |
+
self.apply(self._init_weights)
|
| 373 |
+
|
| 374 |
+
# Zero-out output layers:
|
| 375 |
+
nn.init.constant_(self.output.weight, 0)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
def _init_weights(self, module):
|
| 380 |
+
std = self.config.initializer_range
|
| 381 |
+
if isinstance(module, nn.Linear):
|
| 382 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 383 |
+
if module.bias is not None:
|
| 384 |
+
module.bias.data.zero_()
|
| 385 |
+
elif isinstance(module, nn.Embedding):
|
| 386 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def setup_caches(self, max_batch_size, max_seq_length, dtype):
|
| 390 |
+
# if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
| 391 |
+
# return
|
| 392 |
+
head_dim = self.config.dim // self.config.n_head
|
| 393 |
+
max_seq_length = find_multiple(max_seq_length, 8) #
|
| 394 |
+
self.max_seq_length = max_seq_length
|
| 395 |
+
self.max_batch_size = max_batch_size
|
| 396 |
+
for b in self.layers:
|
| 397 |
+
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)
|
| 398 |
+
|
| 399 |
+
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
|
| 400 |
+
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1)
|
| 401 |
+
grid_size = int(self.config.block_size ** 0.5)
|
| 402 |
+
assert grid_size * grid_size == self.block_size
|
| 403 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
def forward(
|
| 407 |
+
self,
|
| 408 |
+
idx: torch.Tensor,
|
| 409 |
+
cond_idx: torch.Tensor, # cond_idx_or_embed
|
| 410 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 411 |
+
targets: Optional[torch.Tensor] = None,
|
| 412 |
+
mask: Optional[torch.Tensor] = None,
|
| 413 |
+
valid: Optional[torch.Tensor] = None,
|
| 414 |
+
condition: Optional[torch.Tensor] = None,
|
| 415 |
+
control_strength: Optional[int] = 1
|
| 416 |
+
):
|
| 417 |
+
if idx is not None and cond_idx is not None: # training or naive inference
|
| 418 |
+
cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training)
|
| 419 |
+
cond_embeddings = cond_embeddings[:,:self.cls_token_num]
|
| 420 |
+
token_embeddings = self.tok_embeddings(idx)
|
| 421 |
+
if condition is not None:
|
| 422 |
+
condition_embeddings = self.adapter(condition)
|
| 423 |
+
condition_embeddings = self.adapter_mlp(condition_embeddings)
|
| 424 |
+
self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids)
|
| 425 |
+
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)
|
| 426 |
+
|
| 427 |
+
h = self.tok_dropout(token_embeddings)
|
| 428 |
+
self.freqs_cis = self.freqs_cis.to(h.device)
|
| 429 |
+
else:
|
| 430 |
+
if cond_idx is not None: # prefill in inference
|
| 431 |
+
self.control_strength = control_strength
|
| 432 |
+
token_embeddings = self.cls_embedding(cond_idx, train=self.training)
|
| 433 |
+
token_embeddings = token_embeddings[:,:self.cls_token_num]
|
| 434 |
+
if condition is not None:
|
| 435 |
+
condition_embeddings = self.condition_mlp(condition, train=self.training)#.to(torch.bfloat16),train=self.training)
|
| 436 |
+
self.condition_token = condition_embeddings
|
| 437 |
+
self.condition_token = [self.condition_layers[0](self.condition_token),
|
| 438 |
+
self.condition_layers[1](self.condition_token),
|
| 439 |
+
self.condition_layers[2](self.condition_token)]
|
| 440 |
+
|
| 441 |
+
else: # decode_n_tokens(kv cache) in inference
|
| 442 |
+
token_embeddings = self.tok_embeddings(idx)
|
| 443 |
+
bs = token_embeddings.shape[0]
|
| 444 |
+
mask = self.causal_mask[:bs, None, input_pos]
|
| 445 |
+
h = self.tok_dropout(token_embeddings)
|
| 446 |
+
self.freqs_cis = self.freqs_cis
|
| 447 |
+
|
| 448 |
+
if self.training:
|
| 449 |
+
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]]
|
| 450 |
+
else:
|
| 451 |
+
freqs_cis = self.freqs_cis[input_pos]
|
| 452 |
+
# transformer blocks
|
| 453 |
+
for i, layer in enumerate(self.layers):
|
| 454 |
+
if i%self.layer_internal == 0:
|
| 455 |
+
if self.training:
|
| 456 |
+
h[:, self.cls_token_num-1:] = h[:, self.cls_token_num-1:] + self.condition_layers[i//self.layer_internal](self.condition_token)
|
| 457 |
+
else:
|
| 458 |
+
if len(input_pos)>1:
|
| 459 |
+
# h[:, -1:] = h[:, -1:] + self.condition_layers[i//self.layer_internal](self.condition_token[:,0:1])
|
| 460 |
+
h[:,-1:] = h[:, -1:] + self.control_strength*self.condition_token[i//self.layer_internal][:,0:1]
|
| 461 |
+
else:
|
| 462 |
+
# h = h + self.condition_layers[i//self.layer_internal](self.condition_token[:,input_pos-self.cls_token_num+1])
|
| 463 |
+
h = h + self.control_strength*self.condition_token[i//self.layer_internal][:,input_pos-self.cls_token_num+1]
|
| 464 |
+
h = layer(h, freqs_cis, input_pos, mask)
|
| 465 |
+
# output layers
|
| 466 |
+
h = self.norm(h)
|
| 467 |
+
logits = self.output(h).float()
|
| 468 |
+
|
| 469 |
+
if self.training:
|
| 470 |
+
logits = logits[:, self.cls_token_num - 1:].contiguous()
|
| 471 |
+
# if we are given some desired targets also calculate the loss
|
| 472 |
+
loss = None
|
| 473 |
+
if valid is not None:
|
| 474 |
+
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
|
| 475 |
+
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
|
| 476 |
+
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
|
| 477 |
+
elif targets is not None:
|
| 478 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
return logits, loss
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
| 485 |
+
return list(self.layers)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
#################################################################################
|
| 490 |
+
# Rotary Positional Embedding Functions #
|
| 491 |
+
#################################################################################
|
| 492 |
+
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 493 |
+
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 494 |
+
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
| 495 |
+
t = torch.arange(seq_len, device=freqs.device)
|
| 496 |
+
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
|
| 497 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 498 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 499 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 500 |
+
return cond_cache
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 504 |
+
# split the dimension into half, one for x and one for y
|
| 505 |
+
half_dim = n_elem // 2
|
| 506 |
+
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
|
| 507 |
+
t = torch.arange(grid_size, device=freqs.device)
|
| 508 |
+
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
|
| 509 |
+
freqs_grid = torch.concat([
|
| 510 |
+
freqs[:, None, :].expand(-1, grid_size, -1),
|
| 511 |
+
freqs[None, :, :].expand(grid_size, -1, -1),
|
| 512 |
+
], dim=-1) # (grid_size, grid_size, head_dim // 2)
|
| 513 |
+
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
|
| 514 |
+
cache = cache_grid.flatten(0, 1)
|
| 515 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
|
| 516 |
+
return cond_cache
|
| 517 |
+
|
| 518 |
+
def precompute_freqs_cis_2d_new(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120, spe_token_num=3, ar_token_num=4):
|
| 519 |
+
# split the dimension into half, one for x and one for y
|
| 520 |
+
half_dim = n_elem // 2
|
| 521 |
+
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
|
| 522 |
+
t = torch.arange(grid_size, device=freqs.device)
|
| 523 |
+
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
|
| 524 |
+
freqs_grid = torch.concat([
|
| 525 |
+
freqs[:, None, :].expand(-1, grid_size, -1),
|
| 526 |
+
freqs[None, :, :].expand(grid_size, -1, -1),
|
| 527 |
+
], dim=-1) # (grid_size, grid_size, head_dim // 2)
|
| 528 |
+
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
|
| 529 |
+
sub_num = int(ar_token_num**0.5)
|
| 530 |
+
|
| 531 |
+
cache_grid = cache_grid.reshape(sub_num, grid_size//sub_num, sub_num, grid_size//sub_num, half_dim, 2)
|
| 532 |
+
cache_grid = cache_grid.permute(1, 3, 0, 2, 4, 5)
|
| 533 |
+
cache = cache_grid.flatten(0, 3)
|
| 534 |
+
cache_one, cache_two = cache[:ar_token_num], cache[ar_token_num:]
|
| 535 |
+
sep_cache = torch.zeros(spe_token_num, n_elem // 2, 2)
|
| 536 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache_one, sep_cache, cache_two])
|
| 537 |
+
# cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
|
| 538 |
+
return cond_cache
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
|
| 542 |
+
# x: (bs, seq_len, n_head, head_dim)
|
| 543 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
| 544 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
|
| 545 |
+
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
|
| 546 |
+
x_out2 = torch.stack([
|
| 547 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
| 548 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
| 549 |
+
], dim=-1)
|
| 550 |
+
x_out2 = x_out2.flatten(3)
|
| 551 |
+
return x_out2.type_as(x)
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
#################################################################################
|
| 556 |
+
# GPT Configs #
|
| 557 |
+
#################################################################################
|
| 558 |
+
### text-conditional
|
| 559 |
+
def GPT_7B(**kwargs):
|
| 560 |
+
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
|
| 561 |
+
|
| 562 |
+
def GPT_3B(**kwargs):
|
| 563 |
+
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
|
| 564 |
+
|
| 565 |
+
def GPT_1B(**kwargs):
|
| 566 |
+
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
|
| 567 |
+
|
| 568 |
+
### class-conditional
|
| 569 |
+
def GPT_XXXL(**kwargs):
|
| 570 |
+
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
|
| 571 |
+
|
| 572 |
+
def GPT_XXL(**kwargs):
|
| 573 |
+
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
|
| 574 |
+
|
| 575 |
+
def GPT_XL(**kwargs):
|
| 576 |
+
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
|
| 577 |
+
|
| 578 |
+
def GPT_L(**kwargs):
|
| 579 |
+
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
|
| 580 |
+
|
| 581 |
+
def GPT_B(**kwargs):
|
| 582 |
+
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
GPT_models = {
|
| 586 |
+
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
|
| 587 |
+
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
|
| 588 |
+
}
|
CondRefAR/pipeline.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from safetensors.torch import load_file
|
| 5 |
+
from .models.gpt_t2i import GPT_models
|
| 6 |
+
from .models.generate import generate
|
| 7 |
+
from .tokenizer.vq_model import VQ_models
|
| 8 |
+
|
| 9 |
+
class CondRefARPipeline:
|
| 10 |
+
def __init__(self, device=None, torch_dtype=torch.bfloat16):
|
| 11 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
self.dtype = torch_dtype
|
| 13 |
+
self.gpt = None
|
| 14 |
+
self.vq = None
|
| 15 |
+
self.image_size = None
|
| 16 |
+
self.downsample = None
|
| 17 |
+
self.n_q = 8
|
| 18 |
+
|
| 19 |
+
@classmethod
|
| 20 |
+
def from_pretrained(cls, repo_or_path, gpt_config, vq_config, gpt_weights="weights/sketch-gpt-xl.safetensors", vq_weights="weights/vq-16.safetensors", device=None, torch_dtype=torch.bfloat16):
|
| 21 |
+
pipe = cls(device=device, torch_dtype=torch_dtype)
|
| 22 |
+
|
| 23 |
+
# 1) VQ
|
| 24 |
+
pipe.downsample = int(vq_config["downsample_size"])
|
| 25 |
+
codebook_size = int(vq_config["codebook_size"])
|
| 26 |
+
codebook_embed_dim = int(vq_config["codebook_embed_dim"])
|
| 27 |
+
pipe.vq = VQ_models[vq_config.get("model_name", "VQ-16")](codebook_size=codebook_size, codebook_embed_dim=codebook_embed_dim)
|
| 28 |
+
vq_state = load_file(f"{repo_or_path}/{vq_weights}")
|
| 29 |
+
pipe.vq.load_state_dict(vq_state, strict=True)
|
| 30 |
+
pipe.vq.to(pipe.device)
|
| 31 |
+
pipe.vq.eval()
|
| 32 |
+
|
| 33 |
+
# 2) GPT
|
| 34 |
+
pipe.image_size = int(gpt_config["image_size"])
|
| 35 |
+
vocab_size = int(gpt_config["vocab_size"])
|
| 36 |
+
latent_size = pipe.image_size // pipe.downsample
|
| 37 |
+
block_size=latent_size ** 2
|
| 38 |
+
num_classes = int(gpt_config.get("num_classes", 1000))
|
| 39 |
+
cls_token_num = int(gpt_config.get("cls_token_num", 120))
|
| 40 |
+
model_type = gpt_config.get("model_type", "t2i")
|
| 41 |
+
adapter_size = gpt_config.get("adapter_size", "small")
|
| 42 |
+
condition_type = gpt_config.get("condition_type", "sketch")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
pipe.gpt = GPT_models[gpt_config.get("gpt_name", "GPT-XL")](
|
| 46 |
+
vocab_size=vocab_size,
|
| 47 |
+
block_size=block_size,
|
| 48 |
+
num_classes=num_classes,
|
| 49 |
+
cls_token_num=cls_token_num,
|
| 50 |
+
model_type=model_type,
|
| 51 |
+
adapter_size=adapter_size,
|
| 52 |
+
condition_type=condition_type
|
| 53 |
+
).to(device=pipe.device, dtype=pipe.dtype)
|
| 54 |
+
gpt_state = load_file(f"{repo_or_path}/{gpt_weights}")
|
| 55 |
+
pipe.gpt.load_state_dict(gpt_state, strict=False)
|
| 56 |
+
pipe.gpt.eval()
|
| 57 |
+
|
| 58 |
+
return pipe
|
| 59 |
+
|
| 60 |
+
@torch.inference_mode()
|
| 61 |
+
def __call__(self, prompt_emb, control_image, cfg_scale=4, cfg_interval=-1, temperature=1.0, top_k=2000, top_p=1.0):
|
| 62 |
+
"""
|
| 63 |
+
prompt_emb: torch.Tensor [B, T_txt, D]
|
| 64 |
+
control_image: np.ndarray/PIL
|
| 65 |
+
Return: Image
|
| 66 |
+
"""
|
| 67 |
+
# 预处理 control
|
| 68 |
+
if isinstance(control_image, Image.Image):
|
| 69 |
+
control_image = np.array(control_image.convert("RGB"))
|
| 70 |
+
if isinstance(control_image, np.ndarray):
|
| 71 |
+
# [H,W,C] uint8 -> [-1,1]
|
| 72 |
+
control_image = torch.from_numpy(control_image).permute(2,0,1).unsqueeze(0).float()
|
| 73 |
+
if control_image.max() > 1.0:
|
| 74 |
+
control_image = control_image / 255.0
|
| 75 |
+
control_image = 2.0 * (control_image - 0.5)
|
| 76 |
+
control = control_image.to(self.device, dtype=self.dtype)
|
| 77 |
+
# 文本嵌入
|
| 78 |
+
c_indices = prompt_emb.to(self.device, dtype=self.dtype)
|
| 79 |
+
# 这里的 emb_mask 若需要,可在外部构造后传入;为了最小示例,这里置 None
|
| 80 |
+
c_emb_masks = None
|
| 81 |
+
|
| 82 |
+
Hq = self.image_size // self.downsample
|
| 83 |
+
Wq = Hq
|
| 84 |
+
seq_len = Hq * Wq
|
| 85 |
+
# 采样 codebook 索引序列(generate 返回 [B, n_q*Hq*Wq] 或 [B, seq_len] 逐 codebook 生成)
|
| 86 |
+
index_sample = generate(
|
| 87 |
+
self.gpt, c_indices, seq_len, c_emb_masks,
|
| 88 |
+
condition=control, cfg_scale=cfg_scale, cfg_interval=cfg_interval,
|
| 89 |
+
temperature=temperature, top_k=top_k, top_p=top_p, sample_logits=True
|
| 90 |
+
)
|
| 91 |
+
# 重排 [B, n_q, Hq, Wq]
|
| 92 |
+
if index_sample.dim() == 2 and index_sample.shape[1] == self.n_q * Hq * Wq:
|
| 93 |
+
tokens = index_sample.view(index_sample.size(0), self.n_q, Hq, Wq).long()
|
| 94 |
+
elif index_sample.dim() == 2 and index_sample.shape[1] == Hq * Wq:
|
| 95 |
+
tokens = index_sample.view(index_sample.size(0), 1, Hq, Wq).long()
|
| 96 |
+
else:
|
| 97 |
+
# 尝试自动推断 n_q
|
| 98 |
+
n_q = max(1, index_sample.shape[1] // (Hq * Wq))
|
| 99 |
+
tokens = index_sample[:, : n_q * Hq * Wq].view(index_sample.size(0), n_q, Hq, Wq).long()
|
| 100 |
+
tokens = tokens.to(self.device)
|
| 101 |
+
qzshape = [tokens.size(0), 8, Hq, Wq]
|
| 102 |
+
samples = self.vq.decode_code(tokens, qzshape).detach().float().cpu()
|
| 103 |
+
# [-1,1] -> [0,1]
|
| 104 |
+
if samples.min() < -0.9:
|
| 105 |
+
samples = (samples + 1.0) / 2.0
|
| 106 |
+
samples = samples.clamp(0, 1)
|
| 107 |
+
|
| 108 |
+
imgs = []
|
| 109 |
+
arr = (samples * 255).to(torch.uint8).permute(0,2,3,1).numpy()
|
| 110 |
+
for i in range(arr.shape[0]):
|
| 111 |
+
imgs.append(Image.fromarray(arr[i]))
|
| 112 |
+
return imgs
|
CondRefAR/tokenizer/vq_model.py
ADDED
|
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# taming-transformers: https://github.com/CompVis/taming-transformers
|
| 3 |
+
# maskgit: https://github.com/google-research/maskgit
|
| 4 |
+
from dataclasses import dataclass, field
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class ModelArgs:
|
| 14 |
+
codebook_size: int = 16384
|
| 15 |
+
codebook_embed_dim: int = 8
|
| 16 |
+
codebook_l2_norm: bool = True
|
| 17 |
+
codebook_show_usage: bool = True
|
| 18 |
+
commit_loss_beta: float = 0.25
|
| 19 |
+
entropy_loss_ratio: float = 0.0
|
| 20 |
+
|
| 21 |
+
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
| 22 |
+
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
| 23 |
+
z_channels: int = 256
|
| 24 |
+
dropout_p: float = 0.0
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class VQModel(nn.Module):
|
| 29 |
+
def __init__(self, config: ModelArgs):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.config = config
|
| 32 |
+
self.encoder = Encoder(ch_mult=config.encoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
| 33 |
+
self.decoder = Decoder(ch_mult=config.decoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
| 34 |
+
|
| 35 |
+
self.quantize = VectorQuantizer(config.codebook_size, config.codebook_embed_dim,
|
| 36 |
+
config.commit_loss_beta, config.entropy_loss_ratio,
|
| 37 |
+
config.codebook_l2_norm, config.codebook_show_usage)
|
| 38 |
+
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
|
| 39 |
+
self.post_quant_conv = nn.Conv2d(config.codebook_embed_dim, config.z_channels, 1)
|
| 40 |
+
|
| 41 |
+
def encode(self, x):
|
| 42 |
+
#import pdb; pdb.set_trace()
|
| 43 |
+
h = self.encoder(x)
|
| 44 |
+
h = self.quant_conv(h)
|
| 45 |
+
quant, emb_loss, info = self.quantize(h)
|
| 46 |
+
return quant, emb_loss, info
|
| 47 |
+
|
| 48 |
+
def decode(self, quant):
|
| 49 |
+
quant = self.post_quant_conv(quant)
|
| 50 |
+
dec = self.decoder(quant)
|
| 51 |
+
return dec
|
| 52 |
+
|
| 53 |
+
def decode_code(self, code_b, shape=None, channel_first=True):
|
| 54 |
+
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
|
| 55 |
+
dec = self.decode(quant_b)
|
| 56 |
+
return dec
|
| 57 |
+
|
| 58 |
+
def forward(self, input):
|
| 59 |
+
quant, diff, _ = self.encode(input)
|
| 60 |
+
dec = self.decode(quant)
|
| 61 |
+
return dec, diff
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Encoder(nn.Module):
|
| 66 |
+
def __init__(self, in_channels=3, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2,
|
| 67 |
+
norm_type='group', dropout=0.0, resamp_with_conv=True, z_channels=256):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.num_resolutions = len(ch_mult)
|
| 70 |
+
self.num_res_blocks = num_res_blocks
|
| 71 |
+
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
|
| 72 |
+
|
| 73 |
+
# downsampling
|
| 74 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 75 |
+
self.conv_blocks = nn.ModuleList()
|
| 76 |
+
for i_level in range(self.num_resolutions):
|
| 77 |
+
conv_block = nn.Module()
|
| 78 |
+
# res & attn
|
| 79 |
+
res_block = nn.ModuleList()
|
| 80 |
+
attn_block = nn.ModuleList()
|
| 81 |
+
block_in = ch*in_ch_mult[i_level]
|
| 82 |
+
block_out = ch*ch_mult[i_level]
|
| 83 |
+
for _ in range(self.num_res_blocks):
|
| 84 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
| 85 |
+
block_in = block_out
|
| 86 |
+
if i_level == self.num_resolutions - 1:
|
| 87 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
| 88 |
+
conv_block.res = res_block
|
| 89 |
+
conv_block.attn = attn_block
|
| 90 |
+
# downsample
|
| 91 |
+
if i_level != self.num_resolutions-1:
|
| 92 |
+
conv_block.downsample = Downsample(block_in, resamp_with_conv)
|
| 93 |
+
self.conv_blocks.append(conv_block)
|
| 94 |
+
|
| 95 |
+
# middle
|
| 96 |
+
self.mid = nn.ModuleList()
|
| 97 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 98 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
| 99 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 100 |
+
|
| 101 |
+
# end
|
| 102 |
+
self.norm_out = Normalize(block_in, norm_type)
|
| 103 |
+
self.conv_out = nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
h = self.conv_in(x)
|
| 108 |
+
# downsampling
|
| 109 |
+
for i_level, block in enumerate(self.conv_blocks):
|
| 110 |
+
for i_block in range(self.num_res_blocks):
|
| 111 |
+
h = block.res[i_block](h)
|
| 112 |
+
if len(block.attn) > 0:
|
| 113 |
+
h = block.attn[i_block](h)
|
| 114 |
+
if i_level != self.num_resolutions - 1:
|
| 115 |
+
h = block.downsample(h)
|
| 116 |
+
|
| 117 |
+
# middle
|
| 118 |
+
for mid_block in self.mid:
|
| 119 |
+
h = mid_block(h)
|
| 120 |
+
|
| 121 |
+
# end
|
| 122 |
+
h = self.norm_out(h)
|
| 123 |
+
h = nonlinearity(h)
|
| 124 |
+
h = self.conv_out(h)
|
| 125 |
+
return h
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class Decoder(nn.Module):
|
| 130 |
+
def __init__(self, z_channels=256, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2, norm_type="group",
|
| 131 |
+
dropout=0.0, resamp_with_conv=True, out_channels=3):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.num_resolutions = len(ch_mult)
|
| 134 |
+
self.num_res_blocks = num_res_blocks
|
| 135 |
+
|
| 136 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 137 |
+
# z to block_in
|
| 138 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
| 139 |
+
|
| 140 |
+
# middle
|
| 141 |
+
self.mid = nn.ModuleList()
|
| 142 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 143 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
| 144 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 145 |
+
|
| 146 |
+
# upsampling
|
| 147 |
+
self.conv_blocks = nn.ModuleList()
|
| 148 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 149 |
+
conv_block = nn.Module()
|
| 150 |
+
# res & attn
|
| 151 |
+
res_block = nn.ModuleList()
|
| 152 |
+
attn_block = nn.ModuleList()
|
| 153 |
+
block_out = ch*ch_mult[i_level]
|
| 154 |
+
for _ in range(self.num_res_blocks + 1):
|
| 155 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
| 156 |
+
block_in = block_out
|
| 157 |
+
if i_level == self.num_resolutions - 1:
|
| 158 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
| 159 |
+
conv_block.res = res_block
|
| 160 |
+
conv_block.attn = attn_block
|
| 161 |
+
# downsample
|
| 162 |
+
if i_level != 0:
|
| 163 |
+
conv_block.upsample = Upsample(block_in, resamp_with_conv)
|
| 164 |
+
self.conv_blocks.append(conv_block)
|
| 165 |
+
|
| 166 |
+
# end
|
| 167 |
+
self.norm_out = Normalize(block_in, norm_type)
|
| 168 |
+
self.conv_out = nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)
|
| 169 |
+
|
| 170 |
+
@property
|
| 171 |
+
def last_layer(self):
|
| 172 |
+
return self.conv_out.weight
|
| 173 |
+
|
| 174 |
+
def forward(self, z):
|
| 175 |
+
# z to block_in
|
| 176 |
+
h = self.conv_in(z)
|
| 177 |
+
|
| 178 |
+
# middle
|
| 179 |
+
for mid_block in self.mid:
|
| 180 |
+
h = mid_block(h)
|
| 181 |
+
|
| 182 |
+
# upsampling
|
| 183 |
+
for i_level, block in enumerate(self.conv_blocks):
|
| 184 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 185 |
+
h = block.res[i_block](h)
|
| 186 |
+
if len(block.attn) > 0:
|
| 187 |
+
h = block.attn[i_block](h)
|
| 188 |
+
if i_level != self.num_resolutions - 1:
|
| 189 |
+
h = block.upsample(h)
|
| 190 |
+
|
| 191 |
+
# end
|
| 192 |
+
h = self.norm_out(h)
|
| 193 |
+
h = nonlinearity(h)
|
| 194 |
+
h = self.conv_out(h)
|
| 195 |
+
return h
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class VectorQuantizer(nn.Module):
|
| 199 |
+
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
|
| 200 |
+
super().__init__()
|
| 201 |
+
self.n_e = n_e
|
| 202 |
+
self.e_dim = e_dim
|
| 203 |
+
self.beta = beta
|
| 204 |
+
self.entropy_loss_ratio = entropy_loss_ratio
|
| 205 |
+
self.l2_norm = l2_norm
|
| 206 |
+
self.show_usage = show_usage
|
| 207 |
+
|
| 208 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 209 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 210 |
+
if self.l2_norm:
|
| 211 |
+
self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
|
| 212 |
+
if self.show_usage:
|
| 213 |
+
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def forward(self, z):
|
| 217 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 218 |
+
z = torch.einsum('b c h w -> b h w c', z).contiguous()
|
| 219 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 220 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 221 |
+
|
| 222 |
+
if self.l2_norm:
|
| 223 |
+
z = F.normalize(z, p=2, dim=-1)
|
| 224 |
+
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
|
| 225 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
| 226 |
+
else:
|
| 227 |
+
embedding = self.embedding.weight
|
| 228 |
+
|
| 229 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
| 230 |
+
torch.sum(embedding**2, dim=1) - 2 * \
|
| 231 |
+
torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
|
| 232 |
+
|
| 233 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
| 234 |
+
z_q = embedding[min_encoding_indices].view(z.shape)
|
| 235 |
+
perplexity = None
|
| 236 |
+
min_encodings = None
|
| 237 |
+
vq_loss = None
|
| 238 |
+
commit_loss = None
|
| 239 |
+
entropy_loss = None
|
| 240 |
+
codebook_usage = 0
|
| 241 |
+
|
| 242 |
+
if self.show_usage and self.training:
|
| 243 |
+
cur_len = min_encoding_indices.shape[0]
|
| 244 |
+
self.codebook_used[:-cur_len] = self.codebook_used[cur_len:].clone()
|
| 245 |
+
self.codebook_used[-cur_len:] = min_encoding_indices
|
| 246 |
+
codebook_usage = len(torch.unique(self.codebook_used)) / self.n_e
|
| 247 |
+
|
| 248 |
+
# compute loss for embedding
|
| 249 |
+
if self.training:
|
| 250 |
+
vq_loss = torch.mean((z_q - z.detach()) ** 2)
|
| 251 |
+
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
|
| 252 |
+
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
|
| 253 |
+
|
| 254 |
+
# preserve gradients
|
| 255 |
+
z_q = z + (z_q - z).detach()
|
| 256 |
+
|
| 257 |
+
# reshape back to match original input shape
|
| 258 |
+
z_q = torch.einsum('b h w c -> b c h w', z_q)
|
| 259 |
+
|
| 260 |
+
return z_q, (vq_loss, commit_loss, entropy_loss, codebook_usage), (perplexity, min_encodings, min_encoding_indices)
|
| 261 |
+
|
| 262 |
+
def get_codebook_entry(self, indices, shape=None, channel_first=True):
|
| 263 |
+
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
|
| 264 |
+
if self.l2_norm:
|
| 265 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
| 266 |
+
else:
|
| 267 |
+
embedding = self.embedding.weight
|
| 268 |
+
z_q = embedding[indices] # (b*h*w, c)
|
| 269 |
+
|
| 270 |
+
if shape is not None:
|
| 271 |
+
if channel_first:
|
| 272 |
+
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
|
| 273 |
+
# reshape back to match original input shape
|
| 274 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 275 |
+
else:
|
| 276 |
+
z_q = z_q.view(shape)
|
| 277 |
+
return z_q
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class ResnetBlock(nn.Module):
|
| 281 |
+
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group'):
|
| 282 |
+
super().__init__()
|
| 283 |
+
self.in_channels = in_channels
|
| 284 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 285 |
+
self.out_channels = out_channels
|
| 286 |
+
self.use_conv_shortcut = conv_shortcut
|
| 287 |
+
|
| 288 |
+
self.norm1 = Normalize(in_channels, norm_type)
|
| 289 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 290 |
+
self.norm2 = Normalize(out_channels, norm_type)
|
| 291 |
+
self.dropout = nn.Dropout(dropout)
|
| 292 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 293 |
+
|
| 294 |
+
if self.in_channels != self.out_channels:
|
| 295 |
+
if self.use_conv_shortcut:
|
| 296 |
+
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 297 |
+
else:
|
| 298 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 299 |
+
|
| 300 |
+
def forward(self, x):
|
| 301 |
+
h = x
|
| 302 |
+
h = self.norm1(h)
|
| 303 |
+
h = nonlinearity(h)
|
| 304 |
+
h = self.conv1(h)
|
| 305 |
+
h = self.norm2(h)
|
| 306 |
+
h = nonlinearity(h)
|
| 307 |
+
h = self.dropout(h)
|
| 308 |
+
h = self.conv2(h)
|
| 309 |
+
|
| 310 |
+
if self.in_channels != self.out_channels:
|
| 311 |
+
if self.use_conv_shortcut:
|
| 312 |
+
x = self.conv_shortcut(x)
|
| 313 |
+
else:
|
| 314 |
+
x = self.nin_shortcut(x)
|
| 315 |
+
return x+h
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class AttnBlock(nn.Module):
|
| 319 |
+
def __init__(self, in_channels, norm_type='group'):
|
| 320 |
+
super().__init__()
|
| 321 |
+
self.norm = Normalize(in_channels, norm_type)
|
| 322 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 323 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 324 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 325 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def forward(self, x):
|
| 329 |
+
h_ = x
|
| 330 |
+
h_ = self.norm(h_)
|
| 331 |
+
q = self.q(h_)
|
| 332 |
+
k = self.k(h_)
|
| 333 |
+
v = self.v(h_)
|
| 334 |
+
|
| 335 |
+
# compute attention
|
| 336 |
+
b,c,h,w = q.shape
|
| 337 |
+
q = q.reshape(b,c,h*w)
|
| 338 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 339 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 340 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 341 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 342 |
+
w_ = F.softmax(w_, dim=2)
|
| 343 |
+
|
| 344 |
+
# attend to values
|
| 345 |
+
v = v.reshape(b,c,h*w)
|
| 346 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 347 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 348 |
+
h_ = h_.reshape(b,c,h,w)
|
| 349 |
+
|
| 350 |
+
h_ = self.proj_out(h_)
|
| 351 |
+
|
| 352 |
+
return x+h_
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def nonlinearity(x):
|
| 356 |
+
# swish
|
| 357 |
+
return x*torch.sigmoid(x)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def Normalize(in_channels, norm_type='group'):
|
| 361 |
+
assert norm_type in ['group', 'batch']
|
| 362 |
+
if norm_type == 'group':
|
| 363 |
+
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 364 |
+
elif norm_type == 'batch':
|
| 365 |
+
return nn.SyncBatchNorm(in_channels)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class Upsample(nn.Module):
|
| 369 |
+
def __init__(self, in_channels, with_conv):
|
| 370 |
+
super().__init__()
|
| 371 |
+
self.with_conv = with_conv
|
| 372 |
+
if self.with_conv:
|
| 373 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
| 374 |
+
|
| 375 |
+
def forward(self, x):
|
| 376 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 377 |
+
if self.with_conv:
|
| 378 |
+
x = self.conv(x)
|
| 379 |
+
return x
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
class Downsample(nn.Module):
|
| 383 |
+
def __init__(self, in_channels, with_conv):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.with_conv = with_conv
|
| 386 |
+
if self.with_conv:
|
| 387 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 388 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 389 |
+
|
| 390 |
+
def forward(self, x):
|
| 391 |
+
if self.with_conv:
|
| 392 |
+
pad = (0,1,0,1)
|
| 393 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
| 394 |
+
x = self.conv(x)
|
| 395 |
+
else:
|
| 396 |
+
x = F.avg_pool2d(x, kernel_size=2, stride=2)
|
| 397 |
+
return x
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
|
| 401 |
+
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
|
| 402 |
+
flat_affinity /= temperature
|
| 403 |
+
probs = F.softmax(flat_affinity, dim=-1)
|
| 404 |
+
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
|
| 405 |
+
if loss_type == "softmax":
|
| 406 |
+
target_probs = probs
|
| 407 |
+
else:
|
| 408 |
+
raise ValueError("Entropy loss {} not supported".format(loss_type))
|
| 409 |
+
avg_probs = torch.mean(target_probs, dim=0)
|
| 410 |
+
avg_entropy = - torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
|
| 411 |
+
sample_entropy = - torch.mean(torch.sum(target_probs * log_probs, dim=-1))
|
| 412 |
+
loss = sample_entropy - avg_entropy
|
| 413 |
+
return loss
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
#################################################################################
|
| 417 |
+
# VQ Model Configs #
|
| 418 |
+
#################################################################################
|
| 419 |
+
def VQ_8(**kwargs):
|
| 420 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 2, 2, 4], decoder_ch_mult=[1, 2, 2, 4], **kwargs))
|
| 421 |
+
|
| 422 |
+
def VQ_16(**kwargs):
|
| 423 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs))
|
| 424 |
+
|
| 425 |
+
VQ_models = {'VQ-16': VQ_16, 'VQ-8': VQ_8}
|
CondRefAR/utils/drop_path.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from timm.models.layers import DropPath
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
| 5 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 6 |
+
|
| 7 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 8 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 9 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 10 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 11 |
+
'survival rate' as the argument.
|
| 12 |
+
|
| 13 |
+
"""
|
| 14 |
+
if drop_prob == 0. or not training:
|
| 15 |
+
return x
|
| 16 |
+
keep_prob = 1 - drop_prob
|
| 17 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 18 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 19 |
+
if keep_prob > 0.0 and scale_by_keep:
|
| 20 |
+
random_tensor.div_(keep_prob)
|
| 21 |
+
return x * random_tensor
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DropPath(torch.nn.Module):
|
| 25 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 26 |
+
"""
|
| 27 |
+
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
| 28 |
+
super(DropPath, self).__init__()
|
| 29 |
+
self.drop_prob = drop_prob
|
| 30 |
+
self.scale_by_keep = scale_by_keep
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
| 34 |
+
|
| 35 |
+
def extra_repr(self):
|
| 36 |
+
return f'drop_prob={round(self.drop_prob,3):0.3f}'
|
README.md
CHANGED
|
@@ -1,3 +1,78 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: pytorch
|
| 3 |
+
tags:
|
| 4 |
+
- autoregressive
|
| 5 |
+
- image-generation
|
| 6 |
+
- aerial
|
| 7 |
+
- controllable-generation
|
| 8 |
license: apache-2.0
|
| 9 |
+
pipeline_tag: image-to-image
|
| 10 |
---
|
| 11 |
+
|
| 12 |
+
# CondRef-AR: Condition-as-a-Reference Randomized Autoregressive Modelling for Controllable Aerial Image Generation
|
| 13 |
+
|
| 14 |
+
This repository contains the code and pretrained models for **CondRef-AR**, a controllable aerial image generation model using condition-as-a-reference randomized autoregressive modeling. The model generates high-quality aerial images based on input conditions such as sketches or segmentation maps.
|
| 15 |
+
|
| 16 |
+

|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Quickstart
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
import json, torch
|
| 23 |
+
from CondRefAR.pipeline import CondRefARPipeline
|
| 24 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 25 |
+
|
| 26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 28 |
+
|
| 29 |
+
gpt_cfg = json.load(open("configs/gpt_config.json"))
|
| 30 |
+
vq_cfg = json.load(open("configs/vq_config.json"))
|
| 31 |
+
pipe = CondRefARPipeline.from_pretrained(".", gpt_cfg, vq_cfg, device=device, torch_dtype=dtype)
|
| 32 |
+
|
| 33 |
+
tok = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
| 34 |
+
enc = T5EncoderModel.from_pretrained("google/flan-t5-xl", torch_dtype=dtype).to(device).eval()
|
| 35 |
+
|
| 36 |
+
prompt = "Aaerial view of a forested area with a river running through it. On the right side of the image, there is a small town or village with a red-roofed building."
|
| 37 |
+
control = "assets/examples/example2.jpg"
|
| 38 |
+
|
| 39 |
+
from PIL import Image, ImageOps
|
| 40 |
+
control_img = Image.open(control).convert("RGB")
|
| 41 |
+
|
| 42 |
+
inputs = tok([prompt], return_tensors="pt", padding="max_length", truncation=True, max_length=120)
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
emb = enc(input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device)).last_hidden_state
|
| 45 |
+
|
| 46 |
+
imgs = pipe(emb, control_img, cfg_scale=4, temperature=1.0, top_k=2000, top_p=1.0)
|
| 47 |
+
imgs[0].save("sample.png")
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## Sample Results
|
| 51 |
+
By varying the input conditions and prompts, CondRef-AR can generate diverse aerial images:
|
| 52 |
+

|
| 53 |
+
|
| 54 |
+
ConRef-AR can generate continuous, plausible, and high-resolution sequences of land-use change images based on a series of temporal semantic condition graphs. As shown in the figure below, the model successfully simulates the entire process—from a pristine forest gradually transforming into a modern residential urban area:
|
| 55 |
+
|
| 56 |
+

|
| 57 |
+
<div align="center">
|
| 58 |
+
|
| 59 |
+
| Control image | Aerial image |
|
| 60 |
+
|---|---|
|
| 61 |
+
| <img src="assets/control_img.gif" alt="control animation" width="100%"/> | <img src="assets/aerial_img.gif" alt="aerial animation" width="100%"/> |
|
| 62 |
+
|
| 63 |
+
</div>
|
| 64 |
+
|
| 65 |
+
## Files
|
| 66 |
+
- `weights/sketch-gpt-xl.safetensors`, `weights/vq-16.safetensors`: pretrained weight
|
| 67 |
+
- `configs/*.json`: model hyperparameters.
|
| 68 |
+
- `CondRefAR/*`: inference code and pipeline.
|
| 69 |
+
- `assets/example`: example images.
|
| 70 |
+
- `app.py`: Gradio demo.
|
| 71 |
+
|
| 72 |
+
## Notes
|
| 73 |
+
- Requires a GPU with bfloat16 support for best speed; CPU works but slow.
|
| 74 |
+
- CFG params: `cfg_scale`, `temperature`, `top_k`, `top_p` control quality vs diversity.
|
| 75 |
+
- If you have any questions, please open an issue, or contact [email protected].
|
| 76 |
+
|
| 77 |
+
## License
|
| 78 |
+
Apache-2.0 (adjust if different).
|
app.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import json
|
| 4 |
+
from CondRefAR.pipeline import CondRefARPipeline
|
| 5 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 6 |
+
|
| 7 |
+
# 简化:直接用 transformers 的 flan-t5-xl 提取文本嵌入
|
| 8 |
+
def build_t5(device, dtype):
|
| 9 |
+
tok = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
| 10 |
+
enc = T5EncoderModel.from_pretrained("google/flan-t5-xl", torch_dtype=dtype)
|
| 11 |
+
enc = enc.to(device)
|
| 12 |
+
enc.eval()
|
| 13 |
+
return tok, enc
|
| 14 |
+
|
| 15 |
+
def text_to_emb(prompt, tok, enc, device, dtype):
|
| 16 |
+
inputs = tok([prompt], return_tensors="pt", padding='max_length', truncation=True, return_attention_mask=True, add_special_tokens=True, max_length=120)
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
out = enc(input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device))
|
| 19 |
+
emb = out['last_hidden_state'].detach() # [B, T, D]
|
| 20 |
+
return emb.to(dtype)
|
| 21 |
+
|
| 22 |
+
def build_pipeline():
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 25 |
+
with open("configs/gpt_config.json","r") as f:
|
| 26 |
+
gpt_cfg = json.load(f)
|
| 27 |
+
with open("configs/vq_config.json","r") as f:
|
| 28 |
+
vq_cfg = json.load(f)
|
| 29 |
+
pipe = CondRefARPipeline.from_pretrained(".", gpt_cfg, vq_cfg, device=device, torch_dtype=dtype)
|
| 30 |
+
tok, enc = build_t5(device, dtype)
|
| 31 |
+
return pipe, tok, enc
|
| 32 |
+
|
| 33 |
+
pipe, tok, enc = build_pipeline()
|
| 34 |
+
|
| 35 |
+
def infer(prompt, control_image, cfg_scale, temperature, top_k, top_p):
|
| 36 |
+
emb = text_to_emb(prompt, tok, enc, pipe.device, pipe.dtype)
|
| 37 |
+
imgs = pipe(emb, control_image['composite'][:, :, :3], cfg_scale=cfg_scale, temperature=temperature, top_k=top_k, top_p=top_p)
|
| 38 |
+
return imgs[0]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
EXAMPLES = [
|
| 42 |
+
[
|
| 43 |
+
"Aerial view of a large industrial area with multiple buildings and roads. There are several roads and highways visible in the image, and there are several parking lots scattered throughout the area.",
|
| 44 |
+
"assets/examples/example1.jpg",
|
| 45 |
+
4.0, 1.0, 2000, 1.0,
|
| 46 |
+
],
|
| 47 |
+
[
|
| 48 |
+
"Aaerial view of a forested area with a river running through it. On the right side of the image, there is a small town or village with a red-roofed building. ",
|
| 49 |
+
"assets/examples/example2.jpg",
|
| 50 |
+
5.0, 0.95, 2500, 0.95,
|
| 51 |
+
],
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
with gr.Blocks(title="CondRef-AR", theme=gr.themes.Soft()) as demo:
|
| 56 |
+
gr.Markdown("## CondRef-AR: Controllable Aerial Image Generation")
|
| 57 |
+
|
| 58 |
+
with gr.Row(equal_height=True):
|
| 59 |
+
# 左侧:输入区
|
| 60 |
+
with gr.Column(scale=3):
|
| 61 |
+
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Describe the city...")
|
| 62 |
+
editor = gr.ImageEditor(
|
| 63 |
+
type="numpy", crop_size="1:1", canvas_size=(512, 512),
|
| 64 |
+
label="Image"
|
| 65 |
+
)
|
| 66 |
+
with gr.Row():
|
| 67 |
+
btn_gen = gr.Button("Generate", variant="primary")
|
| 68 |
+
btn_clear = gr.Button("Clear")
|
| 69 |
+
|
| 70 |
+
# 右侧:参数 + 输出 + 示例
|
| 71 |
+
with gr.Column(scale=2):
|
| 72 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 73 |
+
cfg_scale = gr.Slider(1, 8, value=4, step=0.5, label="CFG scale")
|
| 74 |
+
temperature = gr.Slider(0.5, 1.5, value=1.0, step=0.05, label="Temperature")
|
| 75 |
+
top_k = gr.Slider(50, 4000, value=2000, step=50, label="top_k")
|
| 76 |
+
top_p = gr.Slider(0.5, 1.0, value=1.0, step=0.01, label="top_p")
|
| 77 |
+
|
| 78 |
+
output = gr.Image(type="pil", label="Result", height=512)
|
| 79 |
+
|
| 80 |
+
# 可点击示例:点击后自动填充并运行
|
| 81 |
+
gr.Examples(
|
| 82 |
+
examples=EXAMPLES,
|
| 83 |
+
inputs=[prompt, editor, cfg_scale, temperature, top_k, top_p],
|
| 84 |
+
outputs=output,
|
| 85 |
+
fn=infer,
|
| 86 |
+
cache_examples=False,
|
| 87 |
+
examples_per_page=2,
|
| 88 |
+
label="Examples"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# 按钮事件
|
| 92 |
+
btn_gen.click(
|
| 93 |
+
infer,
|
| 94 |
+
inputs=[prompt, editor, cfg_scale, temperature, top_k, top_p],
|
| 95 |
+
outputs=output
|
| 96 |
+
)
|
| 97 |
+
btn_clear.click(lambda: (None, None), outputs=[editor, output])
|
| 98 |
+
|
| 99 |
+
if __name__ == "__main__":
|
| 100 |
+
demo.launch()
|
assets/aerial_img.gif
ADDED
|
Git LFS Details
|
assets/control_img.gif
ADDED
|
Git LFS Details
|
assets/evolution.png
ADDED
|
Git LFS Details
|
assets/examples/example1.jpg
ADDED
|
assets/examples/example2.jpg
ADDED
|
assets/method.jpg
ADDED
|
Git LFS Details
|
assets/samples.png
ADDED
|
Git LFS Details
|
configs/gpt_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"gpt_name": "GPT-XL",
|
| 3 |
+
"image_size": 512,
|
| 4 |
+
"downsample_size": 16,
|
| 5 |
+
"vocab_size": 16384,
|
| 6 |
+
"num_classes": 1000,
|
| 7 |
+
"cls_token_num": 120,
|
| 8 |
+
"model_type": "t2i",
|
| 9 |
+
"adapter_size": "small",
|
| 10 |
+
"condition_type": "sketch",
|
| 11 |
+
"dtype": "bfloat16"
|
| 12 |
+
}
|
configs/vq_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "VQ-16",
|
| 3 |
+
"image_size": 512,
|
| 4 |
+
"downsample_size": 16,
|
| 5 |
+
"n_q": 8,
|
| 6 |
+
"codebook_size": 16384,
|
| 7 |
+
"codebook_embed_dim": 8,
|
| 8 |
+
"latent_channels": 8
|
| 9 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
safetensors
|
| 5 |
+
pillow
|
| 6 |
+
numpy
|
| 7 |
+
xformers
|
sample.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json, torch
|
| 2 |
+
from CondRefAR.pipeline import CondRefARPipeline
|
| 3 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 4 |
+
|
| 5 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 6 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 7 |
+
|
| 8 |
+
gpt_cfg = json.load(open("configs/gpt_config.json"))
|
| 9 |
+
vq_cfg = json.load(open("configs/vq_config.json"))
|
| 10 |
+
pipe = CondRefARPipeline.from_pretrained(".", gpt_cfg, vq_cfg, device=device, torch_dtype=dtype)
|
| 11 |
+
|
| 12 |
+
tok = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
| 13 |
+
enc = T5EncoderModel.from_pretrained("google/flan-t5-xl", torch_dtype=dtype).to(device).eval()
|
| 14 |
+
|
| 15 |
+
prompt = "Aaerial view of a forested area with a river running through it. On the right side of the image, there is a small town or village with a red-roofed building."
|
| 16 |
+
control = "assets/examples/example2.jpg"
|
| 17 |
+
|
| 18 |
+
from PIL import Image, ImageOps
|
| 19 |
+
control_img = Image.open(control).convert("RGB")
|
| 20 |
+
|
| 21 |
+
inputs = tok([prompt], return_tensors="pt", padding="max_length", truncation=True, max_length=120)
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
emb = enc(input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device)).last_hidden_state
|
| 24 |
+
|
| 25 |
+
imgs = pipe(emb, control_img, cfg_scale=4, temperature=1.0, top_k=2000, top_p=1.0)
|
| 26 |
+
imgs[0].save("sample.png")
|
weights/sketch-gpt-xl.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:936bf74f9d71ae61ab183d0b6dc133362e2109f73105d3000d371fe6c2d52f3b
|
| 3 |
+
size 3350054432
|
weights/vq-16.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c98b63a8f1da5c325443a7372fdfeb0ca59037d55d31cfccc6b157041fb924e
|
| 3 |
+
size 287832820
|