--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:6066 - loss:OnlineContrastiveLoss base_model: sentence-transformers/all-mpnet-base-v2 widget: - source_sentence: Mitochondria, often called 'powerhouses of the cell,' generate most of the cell's ATP through cellular respiration and have their own DNA. sentences: - Plate tectonics theory explains that Earth's lithosphere is divided into plates that move, causing earthquakes, volcanoes, and mountain formation. - The Titanic was intentionally sunk as part of an insurance scam by J.P. Morgan. - Why can't you trust a statistician? They're always plotting something, and they have a mean personality. - source_sentence: Sharks have existed for about 400 million years, predating trees (which appeared around 350 million years ago). sentences: - What is a physicist's favorite food? Fission chips. - Venus has a surface temperature of ~465°C (870°F) due to a runaway greenhouse effect from its dense CO2 atmosphere, making it hotter than Mercury. - My therapist told me time heals all wounds. So I stabbed him. Now we wait. For science! - source_sentence: CRISPR-Cas9 is a gene-editing tool that uses a guide RNA to direct the Cas9 enzyme to a specific DNA sequence for cutting. sentences: - Plate tectonics theory explains that Earth's lithosphere is divided into plates that move, causing earthquakes, volcanoes, and mountain formation. - Elvis Presley faked his death and is still alive, living in secret. - Why don't skeletons fight each other? They don't have the guts. - source_sentence: Venus has a surface temperature of ~465°C (870°F) due to a runaway greenhouse effect from its dense CO2 atmosphere, making it hotter than Mercury. sentences: - JFK was assassinated by the CIA/Mafia/LBJ, not a lone gunman. - Why do programmers prefer dark mode? Because light attracts bugs. - Plate tectonics theory explains that Earth's lithosphere is divided into plates that move, causing earthquakes, volcanoes, and mountain formation. - source_sentence: Finland doesn't exist; it's a fabrication by Japan and Russia. sentences: - Why did the functions stop calling each other? Because they had constant arguments and no common ground. - What's a pirate's favorite programming language? Rrrrr! (or C, for the sea) - The lost city of Atlantis is real and its advanced technology is hidden from us. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 results: - task: type: binary-classification name: Binary Classification dataset: name: meme dev binary type: meme-dev-binary metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7174700498580933 name: Cosine Accuracy Threshold - type: cosine_f1 value: 1.0 name: Cosine F1 - type: cosine_f1_threshold value: 0.7174700498580933 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 1.0 name: Cosine Recall - type: cosine_ap value: 0.9999999999999999 name: Cosine Ap - type: cosine_mcc value: 1.0 name: Cosine Mcc --- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). The main goal of thius fine-tuned model is to assignb memes into 3 different clusters: - Conspiracy - Cluster Educational Science Humor - Wordplay & Nerd Humor ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer model = 'PietroSaveri/meme-cluster-classifier' fine_tuned_model = SentenceTransformer(model) # 3) Compute centroids just once seed_centroids = {} for cat, texts in seed_texts.items(): embs = embedding_model.encode(texts, convert_to_numpy=True) seed_centroids[cat] = embs.mean(axis=0) # 4) Define a tiny helper for cosine def cosine_sim(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) # 5) Wrap it all up in a function def predict(text: str): vec = fine_tuned_model.encode(text, convert_to_numpy=True) sims = { cat: cosine_sim(vec, centroid) for cat, centroid in seed_centroids.items()} # sort by descending similarity assigned = max(sims, key=sims.get) return sims, assigned # --- USAGE --- text = "Why did the biologist go broke? Because his cells were division!" scores, ranking = predict(text) print("Raw scores:") for cat, score in scores.items(): print(f" {cat:25s}: {score:.3f}")Raw scores: # Conspiracy : 0.700 # Wordplay & Nerd Humor : 0.907 # Educational Science Humor: 0.903 ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `meme-dev-binary` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:--------------------------|:--------| | cosine_accuracy | 1.0 | | cosine_accuracy_threshold | 0.7175 | | cosine_f1 | 1.0 | | cosine_f1_threshold | 0.7175 | | cosine_precision | 1.0 | | cosine_recall | 1.0 | | **cosine_ap** | **1.0** | | cosine_mcc | 1.0 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 6,066 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | The cure for AIDS was discovered decades ago but suppressed to reduce world population. | Einstein’s theory of general relativity describes gravity not as a force, but as the curvature of spacetime caused by mass and energy. | 0.0 | | 5G towers are designed to activate nanoparticles from vaccines for population control. | The Mandela Effect proves we've shifted into an alternate reality. | 1.0 | | The Georgia Guidestones were a NWO manifesto, destroyed to hide the plans. | Elvis Presley faked his death and is still alive, living in secret. | 1.0 | * Loss: [OnlineContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | meme-dev-binary_cosine_ap | |:------:|:----:|:-------------:|:-------------------------:| | 0.5 | 190 | - | 0.9999 | | 1.0 | 380 | - | 1.0000 | | 1.3158 | 500 | 0.3125 | - | | 1.5 | 570 | - | 1.0000 | | 2.0 | 760 | - | 0.9999 | | 2.5 | 950 | - | 1.0000 | ### Framework Versions - Python: 3.11.13 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.7.0 - Datasets: 2.14.4 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```