isarth commited on
Commit
01135d3
·
verified ·
1 Parent(s): 4ca73ad

update readme

Browse files
Files changed (1) hide show
  1. README.md +92 -152
README.md CHANGED
@@ -1,199 +1,139 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
133
 
 
 
 
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
140
 
141
- ## Environmental Impact
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - en-nl-translation
5
+ - translation
6
+ license: apache-2.0
7
+ datasets:
8
+ - OpenOranje/ReOpus-ApolloBooks-EN-NL-1M
9
+ language:
10
+ - nl
11
+ metrics:
12
+ - bleu
13
+ - rouge
14
+ base_model:
15
+ - Qwen/Qwen3-0.6B
16
  ---
17
 
18
+ # OpenOranje/TweeTaal-nl-en-0.6B
19
 
20
+ ## Model Description
21
 
22
+ The TweeTaal-en-nl model has been fine-tuned on Dutch-English translation pairs to provide accurate, fluent translations. The compact 0.6B parameter size makes it suitable for deployment in resource-constrained environments while maintaining strong translation quality.
23
 
24
+ ### Intended Use
25
 
26
+ **Primary Use Case**: Translating Dutch text to English across various domains
27
 
28
+ **Recommended Applications**:
29
+ - General-purpose Dutch-to-English translation
30
+ - Content localization
31
+ - Cross-lingual communication tools
32
+ - Educational language learning applications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Training Details
35
 
 
 
 
 
 
 
36
  ### Training Procedure
37
 
38
+ **Method**: Supervised Fine-Tuning (SFT)
39
+ - The model was trained on parallel Dutch-English text pairs
40
+ - Standard cross-entropy loss optimization
41
+ - The base Qwen3-0.6b model was adapted specifically for translation tasks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ ### Training Data
44
 
45
+ The model was trained on Dutch-English parallel corpora. (Note: Specify your actual dataset details, such as:
46
+ - Dataset name and source
47
+ - Number of training examples
48
+ - Domain coverage (general, technical, literary, etc.)
49
+ - Data preprocessing steps)
50
 
51
+ ## Usage
52
 
53
+ ### Basic Usage Example
54
 
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModelForCausalLM
57
 
58
+ # Load model and tokenizer
59
+ model_name = "OpenOranje/qwen3-0.6b-dutch-english"
60
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
61
+ model = AutoModelForCausalLM.from_pretrained(model_name)
62
 
63
+ # Prepare input
64
+ dutch_text = "Hallo, hoe gaat het met je?"
65
+ prompt = f"Translate from Dutch to English:\n{dutch_text}"
66
+ message = [{"role":"user", "content": prompt}]
67
+ # Generate translation
68
+ inputs = tokenizer.apply_chat_template(message, return_tensors="pt")
69
+ outputs = model.generate(**inputs, max_new_tokens=128, temperature=0.7)
70
+ translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
71
 
72
+ print(translation)
73
+ ```
74
 
75
+ ### Prompt Format
 
 
 
 
76
 
77
+ The model expects input in the following format:
78
 
79
+ ```
80
+ Translate the following text from Dutch to English:\n{dutch_text}"
81
+ ```
82
 
83
+ ### Inference Parameters
84
 
85
+ Recommended generation parameters:
86
+ - **Temperature**: 0.7 (adjust for creativity vs. consistency)
87
+ - **Max tokens**: Set based on expected translation length
88
+ - **Top-p**: 0.9 (nucleus sampling)
89
 
90
+ ## Performance
91
 
92
+ ### Benchmark Results
93
 
94
+ ##### WMT-2024 Translations
95
 
96
+ | Metric | WMT-24 (Finetuned)| WMT-24 (Base)|
97
+ |--------|-------------------| -------------|
98
+ | BLEU | 46.3 | 32.1 |
99
+ | Rouge | 73.1 | 58.3 |
100
 
101
+ ##### Long Context SQuAD Translations
102
 
103
+ | Metric | TweeTaal | Base |
104
+ |--------|-------- | -----|
105
+ | BLEU | 58.3 | |
106
+ | Rouge | 77.9 | |
107
 
108
+ ## Limitations
109
 
110
+ - **Unidirectional**: Trained specifically for Dutch→English;
111
+ - **Context Length**: Trained on 4096 Tokens
112
+ - **Rare Words**: May struggle with highly specialized terminology or rare vocabulary not well-represented in training data
113
+ - **Informal Language**: Performance on slang, dialects, or very informal Dutch may vary
114
 
115
+ ## Ethical Considerations
116
 
117
+ - **Training Data Bias**: The model may reflect biases present in the training data
118
+ - **Cultural Nuances**: Some cultural expressions may not translate perfectly
119
 
 
120
 
121
+ ## Contact
122
 
123
+ For questions or issues, please contact: [theaisarth@proton.me][[email protected]]
124
 
125
+ ---
126
 
127
+ ## Additional Resources
128
 
129
+ - **Base Model**: [Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)
130
+ - **Training Code**: [TBD]
131
+ - **Dataset**: [Data](https://huggingface.co/datasets/OpenOranje/ReOpus-ApolloBooks-EN-NL-1M)
132
 
133
+ ## Version History
134
 
135
+ - **v1.0** (2025-10-24): Initial release
136
 
137
+ ---
138
 
139
+ **License**: [Apache 2.0]