--- language: - de license: apache-2.0 base_model: emilyalsentzer/Bio_Discharge_Summary_BERT tags: - token-classification - ner - pii - pii-detection - de-identification - privacy - healthcare - medical - clinical - phi - german - pytorch - transformers - openmed pipeline_tag: token-classification library_name: transformers metrics: - f1 - precision - recall model-index: - name: OpenMed-PII-German-ClinicDischarge-110M-v1 results: - task: type: token-classification name: Named Entity Recognition dataset: name: AI4Privacy (German subset) type: ai4privacy/pii-masking-400k split: test metrics: - type: f1 value: 0.9308 name: F1 (micro) - type: precision value: 0.9252 name: Precision - type: recall value: 0.9365 name: Recall widget: - text: "Dr. Hans Müller (Sozialversicherungsnummer: 12 150385 M 123) ist erreichbar unter hans.mueller@krankenhaus.de oder 0171 234 5678. Er wohnt in der Hauptstraße 42, 10115 Berlin." example_title: Clinical Note with PII (German) --- # OpenMed-PII-German-ClinicDischarge-110M-v1 **German PII Detection Model** | 110M Parameters | Open Source [![F1 Score](https://img.shields.io/badge/F1-93.08%25-brightgreen)]() [![Precision](https://img.shields.io/badge/Precision-92.52%25-blue)]() [![Recall](https://img.shields.io/badge/Recall-93.65%25-orange)]() ## Model Description **OpenMed-PII-German-ClinicDischarge-110M-v1** is a transformer-based token classification model fine-tuned for **Personally Identifiable Information (PII) detection in German text**. This model identifies and classifies **54 types of sensitive information** including names, addresses, social security numbers, medical record numbers, and more. ### Key Features - **German-Optimized**: Specifically trained on German text for optimal performance - **High Accuracy**: Achieves strong F1 scores across diverse PII categories - **Comprehensive Coverage**: Detects 55+ entity types spanning personal, financial, medical, and contact information - **Privacy-Focused**: Designed for de-identification and compliance with GDPR and other privacy regulations - **Production-Ready**: Optimized for real-world text processing pipelines ## Performance Evaluated on the German subset of AI4Privacy dataset: | Metric | Score | |:---|:---:| | **Micro F1** | **0.9308** | | Precision | 0.9252 | | Recall | 0.9365 | | Macro F1 | 0.9089 | | Weighted F1 | 0.9269 | | Accuracy | 0.9890 | ### Top 10 German PII Models | Rank | Model | F1 | Precision | Recall | |:---:|:---|:---:|:---:|:---:| | 1 | [OpenMed-PII-German-SuperClinical-Large-434M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-SuperClinical-Large-434M-v1) | 0.9761 | 0.9744 | 0.9778 | | 2 | [OpenMed-PII-German-SnowflakeMed-Large-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-SnowflakeMed-Large-568M-v1) | 0.9724 | 0.9705 | 0.9743 | | 3 | [OpenMed-PII-German-ClinicalBGE-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalBGE-568M-v1) | 0.9724 | 0.9702 | 0.9745 | | 4 | [OpenMed-PII-German-BigMed-Large-560M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-BigMed-Large-560M-v1) | 0.9714 | 0.9696 | 0.9732 | | 5 | [OpenMed-PII-German-NomicMed-Large-395M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-NomicMed-Large-395M-v1) | 0.9713 | 0.9690 | 0.9735 | | 6 | [OpenMed-PII-German-SuperMedical-Large-355M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-SuperMedical-Large-355M-v1) | 0.9701 | 0.9684 | 0.9719 | | 7 | [OpenMed-PII-German-EuroMed-210M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-EuroMed-210M-v1) | 0.9683 | 0.9667 | 0.9699 | | 8 | [OpenMed-PII-German-ClinicalBGE-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalBGE-Large-335M-v1) | 0.9652 | 0.9624 | 0.9680 | | 9 | [OpenMed-PII-German-ClinicalE5-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalE5-Large-335M-v1) | 0.9646 | 0.9620 | 0.9672 | | 10 | [OpenMed-PII-German-BiomedELECTRA-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-BiomedELECTRA-Large-335M-v1) | 0.9638 | 0.9598 | 0.9677 | ## Supported Entity Types This model detects **54 PII entity types** organized into categories:
Identifiers (22 types) | Entity | Description | |:---|:---| | `ACCOUNTNAME` | Accountname | | `BANKACCOUNT` | Bankaccount | | `BIC` | Bic | | `BITCOINADDRESS` | Bitcoinaddress | | `CREDITCARD` | Creditcard | | `CREDITCARDISSUER` | Creditcardissuer | | `CVV` | Cvv | | `ETHEREUMADDRESS` | Ethereumaddress | | `IBAN` | Iban | | `IMEI` | Imei | | ... | *and 12 more* |
Personal Info (11 types) | Entity | Description | |:---|:---| | `AGE` | Age | | `DATEOFBIRTH` | Dateofbirth | | `EYECOLOR` | Eyecolor | | `FIRSTNAME` | Firstname | | `GENDER` | Gender | | `HEIGHT` | Height | | `LASTNAME` | Lastname | | `MIDDLENAME` | Middlename | | `OCCUPATION` | Occupation | | `PREFIX` | Prefix | | ... | *and 1 more* |
Contact Info (2 types) | Entity | Description | |:---|:---| | `EMAIL` | Email | | `PHONE` | Phone |
Location (9 types) | Entity | Description | |:---|:---| | `BUILDINGNUMBER` | Buildingnumber | | `CITY` | City | | `COUNTY` | County | | `GPSCOORDINATES` | Gpscoordinates | | `ORDINALDIRECTION` | Ordinaldirection | | `SECONDARYADDRESS` | Secondaryaddress | | `STATE` | State | | `STREET` | Street | | `ZIPCODE` | Zipcode |
Organization (3 types) | Entity | Description | |:---|:---| | `JOBDEPARTMENT` | Jobdepartment | | `JOBTITLE` | Jobtitle | | `ORGANIZATION` | Organization |
Financial (5 types) | Entity | Description | |:---|:---| | `AMOUNT` | Amount | | `CURRENCY` | Currency | | `CURRENCYCODE` | Currencycode | | `CURRENCYNAME` | Currencyname | | `CURRENCYSYMBOL` | Currencysymbol |
Temporal (2 types) | Entity | Description | |:---|:---| | `DATE` | Date | | `TIME` | Time |
## Usage ### Quick Start ```python from transformers import pipeline # Load the PII detection pipeline ner = pipeline("ner", model="OpenMed/OpenMed-PII-German-ClinicDischarge-110M-v1", aggregation_strategy="simple") text = """ Patient Hans Schmidt (geboren am 15.03.1985, SVN: 12 150385 M 234) wurde heute untersucht. Kontakt: hans.schmidt@email.de, Telefon: 0171 234 5678. Adresse: Mozartstraße 15, 80336 München. """ entities = ner(text) for entity in entities: print(f"{entity['entity_group']}: {entity['word']} (score: {entity['score']:.3f})") ``` ### De-identification Example ```python def redact_pii(text, entities, placeholder='[REDACTED]'): """Replace detected PII with placeholders.""" # Sort entities by start position (descending) to preserve offsets sorted_entities = sorted(entities, key=lambda x: x['start'], reverse=True) redacted = text for ent in sorted_entities: redacted = redacted[:ent['start']] + f"[{ent['entity_group']}]" + redacted[ent['end']:] return redacted # Apply de-identification redacted_text = redact_pii(text, entities) print(redacted_text) ``` ### Batch Processing ```python from transformers import AutoModelForTokenClassification, AutoTokenizer import torch model_name = "OpenMed/OpenMed-PII-German-ClinicDischarge-110M-v1" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) texts = [ "Patient Hans Schmidt (geboren am 15.03.1985, SVN: 12 150385 M 234) wurde heute untersucht.", "Kontakt: hans.schmidt@email.de, Telefon: 0171 234 5678.", ] inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1) ``` ## Training Details ### Dataset - **Source**: [AI4Privacy PII Masking 400k](https://huggingface.co/datasets/ai4privacy/pii-masking-400k) (German subset) - **Format**: BIO-tagged token classification - **Labels**: 109 total (54 entity types × 2 BIO tags + O) ### Training Configuration - **Max Sequence Length**: 512 tokens - **Epochs**: 3 - **Framework**: Hugging Face Transformers + Trainer API ## Intended Use & Limitations ### Intended Use - **De-identification**: Automated redaction of PII in German clinical notes, medical records, and documents - **Compliance**: Supporting GDPR, and other privacy regulation compliance - **Data Preprocessing**: Preparing datasets for research by removing sensitive information - **Audit Support**: Identifying PII in document collections ### Limitations **Important**: This model is intended as an **assistive tool**, not a replacement for human review. - **False Negatives**: Some PII may not be detected; always verify critical applications - **Context Sensitivity**: Performance may vary with domain-specific terminology - **Language**: Optimized for German text; may not perform well on other languages ## Citation ```bibtex @misc{openmed-pii-2026, title = {OpenMed-PII-German-ClinicDischarge-110M-v1: German PII Detection Model}, author = {OpenMed Science}, year = {2026}, publisher = {Hugging Face}, url = {https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicDischarge-110M-v1} } ``` ## Links - **Organization**: [OpenMed](https://huggingface.co/OpenMed)