# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Whisper """ import math from functools import partial from typing import List, Optional, Union from collections import deque import torch import torch.nn.functional as F from transformers import WhisperFeatureExtractor from transformers.audio_utils import mel_filter_bank from transformers.configuration_utils import PretrainedConfig from transformers.feature_extraction_utils import BatchFeature from transformers.utils import TensorType, logging logger = logging.get_logger(__name__) class ExtractorIterator: def __init__( self, data, batch_size=8, chunk_length=30, overlap_seconds=10, overlap_side="both", sampling_rate=16000, encode_func = None, ) -> None: self.data = data self.batch_size = batch_size self.chunk_length = chunk_length self.overlap_seconds = overlap_seconds self.overlap_side = overlap_side self.sampling_rate = sampling_rate # duration_size 是每次处理的有效音频长度 self.chunk_size = int(self.chunk_length * self.sampling_rate) self.overlap_size = int(self.overlap_seconds * self.sampling_rate) self.duration_size = self.chunk_size - self.overlap_size assert ( (overlap_side == "right") or (self.overlap_size % 2 == 0) ), '`overlap_seconds` must be divisible by 2 when `overlap_side` is "both".' # 注意:这里我们只处理不带重叠的块,重叠将在外部处理(如果需要) # 或者在迭代器内部更明确地处理。为了简化,我们假设分块是基于 duration_size assert callable(encode_func) self.encode_func = encode_func def __iter__(self): """ 返回一个生成器,该生成器负责处理所有批处理逻辑。 这是最 Pythonic 的实现方式。 """ # 批处理相关的变量现在是 __iter__ 的局部变量,非常清晰 batch_num = 0 # 注意:chunk_and_pad_view 输出的块大小是 duration_size wav_tensor = torch.zeros(self.batch_size, 1, self.chunk_size) input_lengths = deque(maxlen=self.batch_size) input_seq_no = torch.zeros(self.batch_size, dtype=torch.long) right_boundary = self.get_right_boundary() for i, sample in enumerate(self.data): sample_chunks, sample_lengths, sample_seq_no = self.chunk_and_pad_view(sample, i) processed_in_sample = 0 while processed_in_sample < len(sample_chunks): space_in_batch = self.batch_size - batch_num chunks_to_add = min(space_in_batch, len(sample_chunks) - processed_in_sample) # 定义切片范围 start_idx_sample = processed_in_sample end_idx_sample = processed_in_sample + chunks_to_add start_idx_batch = batch_num end_idx_batch = batch_num + chunks_to_add # 填充数据 wav_tensor[start_idx_batch:end_idx_batch] = sample_chunks[start_idx_sample:end_idx_sample] input_lengths.extend(sample_lengths[start_idx_sample:end_idx_sample]) input_seq_no[start_idx_batch:end_idx_batch] = sample_seq_no[start_idx_sample:end_idx_sample] # 更新计数器 batch_num += chunks_to_add processed_in_sample += chunks_to_add # 如果批次满了,yield 一个副本并重置 if batch_num == self.batch_size: list_x = [] for xi, (_, right) in enumerate(input_lengths): if right == right_boundary and torch.any(wav_tensor[xi, :, right:] != 0): list_x.append(wav_tensor[xi].reshape(-1).cpu().numpy()) else: list_x.append(wav_tensor[xi, :, :right].reshape(-1).cpu().numpy()) yield BatchFeature({ **self.encode_func(list_x), "input_lengths": input_lengths, "chunk_seq_no": input_seq_no.clone(), }) # 重置批次计数器和Tensor内容 batch_num = 0 wav_tensor.zero_() input_lengths.clear() input_seq_no.zero_() # 循环结束后,处理最后一个未满的批次 if batch_num > 0: list_x = [] for xi in range(batch_num): _, right = input_lengths[xi] if right == right_boundary and torch.any(wav_tensor[xi, :, right:] != 0): list_x.append(wav_tensor[xi].reshape(-1).cpu().numpy()) else: list_x.append(wav_tensor[xi, :, :right].reshape(-1).cpu().numpy()) yield BatchFeature({ **self.encode_func(list_x), "input_lengths": input_lengths, "chunk_seq_no": input_seq_no[:batch_num].clone(), }) def chunk_and_pad_view(self, tensor, seq_no): x = tensor[0:1, :].unsqueeze(0) stride = self.duration_size kernel = self.chunk_size B, C, L = x.shape num_chunks = max(0, math.ceil((L - kernel) / stride)) + 1 target_len = (num_chunks - 1) * stride + kernel padding_size = max(0, target_len - L) x_padded = F.pad(x, (0, padding_size), "constant", 0) output_tensor = x_padded.unfold(dimension=2, size=kernel, step=stride).squeeze(0).transpose(0, 1) output_lengths = self.get_windows_boundaries(num_chunks, L) output_seq_no = torch.full((num_chunks,), seq_no, dtype=torch.long) return output_tensor, output_lengths, output_seq_no def get_left_boundary(self): if self.overlap_side == "right": return 0 else: return int(self.overlap_size / 2) def get_right_boundary(self): if self.overlap_side == "right": return self.duration_size else: return self.chunk_size - int(self.overlap_size / 2) def get_windows_boundaries(self, num_chunks, seq_len): left_boundary = self.get_left_boundary() right_boundary = self.get_right_boundary() output_lengths = [(left_boundary, right_boundary) for _ in range(num_chunks)] output_lengths[0] = (0, output_lengths[0][1]) output_lengths[-1] = (output_lengths[-1][0], seq_len - self.duration_size * (num_chunks-1)) return output_lengths class XYTokenizerFeatureExtractor(WhisperFeatureExtractor): def __init__( self, feature_size=80, sampling_rate=16000, hop_length=160, chunk_length=30, n_fft=400, n_samples=480000, nb_max_frames=3000, padding_side="right", padding_value=0.0, dither=0.0, return_attention_mask=False, max_frequency=None, batch_size=8, overlap_side="both", **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, hop_length=hop_length, chunk_length=chunk_length, n_fft=n_fft, padding_value=padding_value, dither=dither, return_attention_mask=return_attention_mask, n_samples=n_samples, nb_max_frames=nb_max_frames, padding_side=padding_side, **kwargs, ) self.max_frequency = max_frequency if max_frequency is not None else sampling_rate / 2 self.batch_size = batch_size self.mel_filters = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=feature_size, min_frequency=0.0, max_frequency=self.max_frequency, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ) self.overlap_side = overlap_side def __call__( self, raw_speech: Union[torch.Tensor, List[torch.Tensor]], truncation: bool = True, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, padding: Optional[str] = "max_length", max_length: Optional[int] = None, sampling_rate: Optional[int] = None, do_normalize: Optional[bool] = None, device: Optional[str] = "cpu", return_token_timestamps: Optional[bool] = None, overlap_seconds: int = 10, **kwargs, ) -> ExtractorIterator: if not isinstance(raw_speech, list): raw_speech = [raw_speech] return ExtractorIterator( raw_speech, batch_size=self.batch_size if self.batch_size else len(raw_speech), chunk_length=self.chunk_length, overlap_seconds=overlap_seconds, overlap_side=self.overlap_side, sampling_rate=self.sampling_rate, encode_func=partial( super().__call__, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_attention_mask=return_attention_mask, padding=padding, max_length=max_length, sampling_rate=sampling_rate, do_normalize=do_normalize, device=device, return_token_timestamps=return_token_timestamps, **kwargs, ) )