File size: 10,494 Bytes
c884072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Whisper
"""
import math
from functools import partial
from typing import List, Optional, Union
from collections import deque
import torch
import torch.nn.functional as F
from transformers import WhisperFeatureExtractor
from transformers.audio_utils import mel_filter_bank
from transformers.configuration_utils import PretrainedConfig
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import TensorType, logging
logger = logging.get_logger(__name__)
class ExtractorIterator:
def __init__(
self,
data,
batch_size=8,
chunk_length=30,
overlap_seconds=10,
overlap_side="both",
sampling_rate=16000,
encode_func = None,
) -> None:
self.data = data
self.batch_size = batch_size
self.chunk_length = chunk_length
self.overlap_seconds = overlap_seconds
self.overlap_side = overlap_side
self.sampling_rate = sampling_rate
# duration_size 是每次处理的有效音频长度
self.chunk_size = int(self.chunk_length * self.sampling_rate)
self.overlap_size = int(self.overlap_seconds * self.sampling_rate)
self.duration_size = self.chunk_size - self.overlap_size
assert (
(overlap_side == "right") or (self.overlap_size % 2 == 0)
), '`overlap_seconds` must be divisible by 2 when `overlap_side` is "both".'
# 注意:这里我们只处理不带重叠的块,重叠将在外部处理(如果需要)
# 或者在迭代器内部更明确地处理。为了简化,我们假设分块是基于 duration_size
assert callable(encode_func)
self.encode_func = encode_func
def __iter__(self):
"""
返回一个生成器,该生成器负责处理所有批处理逻辑。
这是最 Pythonic 的实现方式。
"""
# 批处理相关的变量现在是 __iter__ 的局部变量,非常清晰
batch_num = 0
# 注意:chunk_and_pad_view 输出的块大小是 duration_size
wav_tensor = torch.zeros(self.batch_size, 1, self.chunk_size)
input_lengths = deque(maxlen=self.batch_size)
input_seq_no = torch.zeros(self.batch_size, dtype=torch.long)
right_boundary = self.get_right_boundary()
for i, sample in enumerate(self.data):
sample_chunks, sample_lengths, sample_seq_no = self.chunk_and_pad_view(sample, i)
processed_in_sample = 0
while processed_in_sample < len(sample_chunks):
space_in_batch = self.batch_size - batch_num
chunks_to_add = min(space_in_batch, len(sample_chunks) - processed_in_sample)
# 定义切片范围
start_idx_sample = processed_in_sample
end_idx_sample = processed_in_sample + chunks_to_add
start_idx_batch = batch_num
end_idx_batch = batch_num + chunks_to_add
# 填充数据
wav_tensor[start_idx_batch:end_idx_batch] = sample_chunks[start_idx_sample:end_idx_sample]
input_lengths.extend(sample_lengths[start_idx_sample:end_idx_sample])
input_seq_no[start_idx_batch:end_idx_batch] = sample_seq_no[start_idx_sample:end_idx_sample]
# 更新计数器
batch_num += chunks_to_add
processed_in_sample += chunks_to_add
# 如果批次满了,yield 一个副本并重置
if batch_num == self.batch_size:
list_x = []
for xi, (_, right) in enumerate(input_lengths):
if right == right_boundary and torch.any(wav_tensor[xi, :, right:] != 0):
list_x.append(wav_tensor[xi].reshape(-1).cpu().numpy())
else:
list_x.append(wav_tensor[xi, :, :right].reshape(-1).cpu().numpy())
yield BatchFeature({
**self.encode_func(list_x),
"input_lengths": input_lengths,
"chunk_seq_no": input_seq_no.clone(),
})
# 重置批次计数器和Tensor内容
batch_num = 0
wav_tensor.zero_()
input_lengths.clear()
input_seq_no.zero_()
# 循环结束后,处理最后一个未满的批次
if batch_num > 0:
list_x = []
for xi in range(batch_num):
_, right = input_lengths[xi]
if right == right_boundary and torch.any(wav_tensor[xi, :, right:] != 0):
list_x.append(wav_tensor[xi].reshape(-1).cpu().numpy())
else:
list_x.append(wav_tensor[xi, :, :right].reshape(-1).cpu().numpy())
yield BatchFeature({
**self.encode_func(list_x),
"input_lengths": input_lengths,
"chunk_seq_no": input_seq_no[:batch_num].clone(),
})
def chunk_and_pad_view(self, tensor, seq_no):
x = tensor[0:1, :].unsqueeze(0)
stride = self.duration_size
kernel = self.chunk_size
B, C, L = x.shape
num_chunks = max(0, math.ceil((L - kernel) / stride)) + 1
target_len = (num_chunks - 1) * stride + kernel
padding_size = max(0, target_len - L)
x_padded = F.pad(x, (0, padding_size), "constant", 0)
output_tensor = x_padded.unfold(dimension=2, size=kernel, step=stride).squeeze(0).transpose(0, 1)
output_lengths = self.get_windows_boundaries(num_chunks, L)
output_seq_no = torch.full((num_chunks,), seq_no, dtype=torch.long)
return output_tensor, output_lengths, output_seq_no
def get_left_boundary(self):
if self.overlap_side == "right":
return 0
else:
return int(self.overlap_size / 2)
def get_right_boundary(self):
if self.overlap_side == "right":
return self.duration_size
else:
return self.chunk_size - int(self.overlap_size / 2)
def get_windows_boundaries(self, num_chunks, seq_len):
left_boundary = self.get_left_boundary()
right_boundary = self.get_right_boundary()
output_lengths = [(left_boundary, right_boundary) for _ in range(num_chunks)]
output_lengths[0] = (0, output_lengths[0][1])
output_lengths[-1] = (output_lengths[-1][0], seq_len - self.duration_size * (num_chunks-1))
return output_lengths
class XYTokenizerFeatureExtractor(WhisperFeatureExtractor):
def __init__(
self,
feature_size=80,
sampling_rate=16000,
hop_length=160,
chunk_length=30,
n_fft=400,
n_samples=480000,
nb_max_frames=3000,
padding_side="right",
padding_value=0.0,
dither=0.0,
return_attention_mask=False,
max_frequency=None,
batch_size=8,
overlap_side="both",
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
hop_length=hop_length,
chunk_length=chunk_length,
n_fft=n_fft,
padding_value=padding_value,
dither=dither,
return_attention_mask=return_attention_mask,
n_samples=n_samples,
nb_max_frames=nb_max_frames,
padding_side=padding_side,
**kwargs,
)
self.max_frequency = max_frequency if max_frequency is not None else sampling_rate / 2
self.batch_size = batch_size
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=self.max_frequency,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
)
self.overlap_side = overlap_side
def __call__(
self,
raw_speech: Union[torch.Tensor, List[torch.Tensor]],
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
padding: Optional[str] = "max_length",
max_length: Optional[int] = None,
sampling_rate: Optional[int] = None,
do_normalize: Optional[bool] = None,
device: Optional[str] = "cpu",
return_token_timestamps: Optional[bool] = None,
overlap_seconds: int = 10,
**kwargs,
) -> ExtractorIterator:
if not isinstance(raw_speech, list):
raw_speech = [raw_speech]
return ExtractorIterator(
raw_speech,
batch_size=self.batch_size if self.batch_size else len(raw_speech),
chunk_length=self.chunk_length,
overlap_seconds=overlap_seconds,
overlap_side=self.overlap_side,
sampling_rate=self.sampling_rate,
encode_func=partial(
super().__call__,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
padding=padding,
max_length=max_length,
sampling_rate=sampling_rate,
do_normalize=do_normalize,
device=device,
return_token_timestamps=return_token_timestamps,
**kwargs,
)
)
|