Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,76 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: llama3.1
|
| 5 |
+
tags:
|
| 6 |
+
- llama-3.1
|
| 7 |
+
- ncsoft
|
| 8 |
+
- varco
|
| 9 |
+
base_model:
|
| 10 |
+
- meta-llama/Meta-Llama-3.1-8B-Instruct
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## Llama-3.1-Varco-8B-Instruct
|
| 14 |
+
|
| 15 |
+
### About the Model
|
| 16 |
+
|
| 17 |
+
**Llama-3.1-Varco-8B-Instruct** is a *generative model* based on Meta-Llama-3.1-8B, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.
|
| 18 |
+
|
| 19 |
+
- **Developed by:** NC Research, Language Model Team
|
| 20 |
+
- **Languages (NLP):** Korean, English
|
| 21 |
+
- **License:** LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
|
| 22 |
+
- **Base model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)
|
| 23 |
+
|
| 24 |
+
## Uses
|
| 25 |
+
|
| 26 |
+
### Direct Use
|
| 27 |
+
|
| 28 |
+
We recommend to use transformers v4.43.0 or later, as advised for Llama-3.1.
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 32 |
+
import torch
|
| 33 |
+
|
| 34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
+
"NCSOFT/Llama-3.1-Varco-8B-Instruct",
|
| 36 |
+
torch_dtype=torch.bfloat16,
|
| 37 |
+
device_map="auto"
|
| 38 |
+
)
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-3.1-Varco-8B-Instruct")
|
| 40 |
+
|
| 41 |
+
messages = [
|
| 42 |
+
{"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."},
|
| 43 |
+
{"role": "user", "content": "안녕하세요."}
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
|
| 47 |
+
|
| 48 |
+
eos_token_id = [
|
| 49 |
+
tokenizer.eos_token_id,
|
| 50 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
outputs = model.generate(
|
| 54 |
+
inputs,
|
| 55 |
+
eos_token_id=eos_token_id,
|
| 56 |
+
max_length=8192
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
print(tokenizer.decode(outputs[0]))
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Evaluation
|
| 63 |
+
|
| 64 |
+
### LogicKor
|
| 65 |
+
|
| 66 |
+
We used the [LogicKor](https://github.com/instructkr/LogicKor) code to measure performance. For the judge model, we used the officially recommended gpt-4-1106-preview. The score includes only the 0-shot evaluation provided in the default.
|
| 67 |
+
|
| 68 |
+
| Model | Math | Reasoning | Writing | Coding | Understanding | Grammer | Single turn | Multi turn | Overall |
|
| 69 |
+
|--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------|
|
| 70 |
+
| [Llama-3.1-Varco-8B-Instruct](https://huggingface.co/NCSOFT/Llama-3.1-Varco-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 |
|
| 71 |
+
| [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 |
|
| 72 |
+
| [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86 | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 |
|
| 73 |
+
| [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98
|
| 74 |
+
| [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 |
|
| 75 |
+
|
| 76 |
+
|