Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,101 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- nli
|
| 5 |
+
- bert
|
| 6 |
+
- natural-language-inference
|
| 7 |
+
language:
|
| 8 |
+
- ru
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
- f1
|
| 12 |
+
- precision
|
| 13 |
+
- recall
|
| 14 |
+
base_model:
|
| 15 |
+
- cointegrated/rubert-tiny2
|
| 16 |
+
pipeline_tag: text-classification
|
| 17 |
+
model-index:
|
| 18 |
+
- name: rubert-tiny-nli-terra-v0
|
| 19 |
+
results:
|
| 20 |
+
- task:
|
| 21 |
+
type: text-classification
|
| 22 |
+
name: Text Classification
|
| 23 |
+
dataset:
|
| 24 |
+
name: TERRA
|
| 25 |
+
type: NLI
|
| 26 |
+
split: validation
|
| 27 |
+
metrics:
|
| 28 |
+
- type: accuracy
|
| 29 |
+
value: 0.6807817589576547
|
| 30 |
+
name: Accuracy
|
| 31 |
+
- type: f1
|
| 32 |
+
value: 0.6776315789473685
|
| 33 |
+
name: F1
|
| 34 |
+
- type: precision
|
| 35 |
+
value: 0.6821192052980133
|
| 36 |
+
name: Precision
|
| 37 |
+
- type: recall
|
| 38 |
+
value: 0.673202614379085
|
| 39 |
+
name: Recall
|
| 40 |
---
|
| 41 |
|
| 42 |
+
**⚠️ Disclaimer: This model is in the early stages of development and may produce low-quality predictions. For better results, consider using the recommended Russian natural language inference models available [here](https://huggingface.co/cointegrated).**
|
| 43 |
+
|
| 44 |
+
# RuBERT-tiny-nli v1
|
| 45 |
+
|
| 46 |
+
This model is a second attempt to fine-tune the [RuBERT-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) model for a two-way natural language inference task, utilizing the Russian [Textual Entailment Recognition](https://russiansuperglue.com/tasks/task_info/TERRa) dataset. This model uses a custom classifier head with two dense layers. The performance is currently limited.
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
## Usage
|
| 50 |
+
How to run the model for NLI:
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
# !pip install transformers sentencepiece --quiet
|
| 54 |
+
import torch
|
| 55 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 56 |
+
|
| 57 |
+
model_id = 'Marwolaeth/rubert-tiny-nli-terra-v0'
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 59 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 60 |
+
if torch.cuda.is_available():
|
| 61 |
+
model.cuda()
|
| 62 |
+
|
| 63 |
+
# An example from the base model card
|
| 64 |
+
premise1 = 'Сократ - человек, а все люди смертны.'
|
| 65 |
+
hypothesis1 = 'Сократ никогда не умрёт.'
|
| 66 |
+
with torch.inference_mode():
|
| 67 |
+
prediction = model(
|
| 68 |
+
**tokenizer(premise1, hypothesis1, return_tensors='pt').to(model.device)
|
| 69 |
+
)
|
| 70 |
+
p = torch.softmax(prediction.logits, -1).cpu().numpy()[0]
|
| 71 |
+
print({v: p[k] for k, v in model.config.id2label.items()})
|
| 72 |
+
# {'not_entailment': 0.61647415, 'entailment': 0.38352585}
|
| 73 |
+
|
| 74 |
+
# An example concerning sentiments
|
| 75 |
+
premise2 = 'Я ненавижу желтые занавески'
|
| 76 |
+
hypothesis2 = 'Мне нравятся желтые занавески'
|
| 77 |
+
with torch.inference_mode():
|
| 78 |
+
prediction = model(
|
| 79 |
+
**tokenizer(premise2, hypothesis2, return_tensors='pt').to(model.device)
|
| 80 |
+
)
|
| 81 |
+
p = torch.softmax(prediction.logits, -1).cpu().numpy()[0]
|
| 82 |
+
print({v: p[k] for k, v in model.config.id2label.items()})
|
| 83 |
+
# {'not_entailment': 0.520086, 'entailment': 0.47991407}
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## Model Performance Metrics
|
| 87 |
+
|
| 88 |
+
The following metrics summarize the performance of the model on the test dataset:
|
| 89 |
+
|
| 90 |
+
| Metric | Value |
|
| 91 |
+
|----------------------------------|---------------------------|
|
| 92 |
+
| **Validation Loss** | 0.6640 |
|
| 93 |
+
| **Validation Accuracy** | 68.08% |
|
| 94 |
+
| **Validation F1 Score** | 67.76% |
|
| 95 |
+
| **Validation Precision** | 68.21% |
|
| 96 |
+
| **Validation Recall** | 67.32% |
|
| 97 |
+
| **Validation Runtime*** | 0.2521 seconds |
|
| 98 |
+
| **Samples per Second*** | 1 219.90 |
|
| 99 |
+
| **Steps per Second*** | 7.93 |
|
| 100 |
+
|
| 101 |
+
*Using T4 GPU with Google Colab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|