# Linux Kernel Anti-Pattern Detector - Project Structure ## Overview This project is organized into a clear, maintainable structure that separates concerns and makes it easy to find, modify, and extend functionality. ## Directory Structure ``` Linux Kernel Anti-Pattern Detector/ ├── 📁 data/ # Analysis data and results │ ├── results.json # Main analysis results │ ├── concurrency_analysis_report.json │ └── kernel_analysis.log # Analysis logs │ ├── 📁 docs/ # Documentation │ ├── kernel-analysis-guide.md # Kernel analysis documentation │ └── [additional documentation] │ ├── 📁 examples/ # Example code and usage │ └── [example files] │ ├── 📁 reports/ # Generated analysis reports │ ├── Linux_Kernel_Anti_Pattern_Analysis_Report.md │ ├── Executive_Summary.md │ └── 📁 concurrency/ # Concurrency-specific reports │ └── Concurrency_Analysis_Report.md │ ├── 📁 scripts/ # Analysis and utility scripts │ ├── 📁 analysis/ # Core analysis scripts │ │ ├── concurrency_analyzer.py # Concurrency issue analyzer │ │ └── analyze_kernel_structure.py │ ├── 📁 reporting/ # Report generation scripts │ │ └── view_results.py # Results viewer │ └── 📁 utils/ # Utility scripts │ └── quick_summary.py # Quick summary generator │ ├── 📁 src/ # Source code (main project) │ ├── __init__.py │ ├── 📁 detectors/ # Anti-pattern detection modules │ ├── 📁 rules/ # Detection rules and patterns │ └── 📁 utils/ # Utility functions │ ├── 📁 tests/ # Test files │ └── [test files] │ ├── 📁 tools/ # Analysis tools and detectors │ ├── 📁 detectors/ # Main detection tools │ │ ├── detector.py # Main anti-pattern detector │ │ └── config.yaml # Detection configuration │ ├── 📁 visualizers/ # Data visualization tools │ └── 📁 exporters/ # Data export tools │ ├── 📁 linux/ # Linux kernel source (cloned) │ └── [kernel source files] │ ├── 📄 README.md # Main project documentation ├── 📄 requirements.txt # Main project dependencies ├── 📄 requirements-kernel-analysis.txt ├── 📄 requirements-simple.txt ├── 📄 .gitignore # Git ignore rules └── 📄 PROJECT_STRUCTURE.md # This file ``` ## Directory Descriptions ### 📁 data/ Contains all analysis results, logs, and generated data files. - **results.json**: Complete analysis results from the main detector - **concurrency_analysis_report.json**: Detailed concurrency analysis - **kernel_analysis.log**: Analysis execution logs ### 📁 docs/ Project documentation and guides. - **kernel-analysis-guide.md**: Comprehensive guide for kernel analysis - Additional documentation for specific features ### 📁 examples/ Example code, usage patterns, and sample data. - Example kernel modules for testing - Sample configuration files - Usage examples ### 📁 reports/ Generated analysis reports in various formats. - **Linux_Kernel_Anti_Pattern_Analysis_Report.md**: Complete technical report - **Executive_Summary.md**: High-level summary for stakeholders - **concurrency/**: Specialized reports for specific issue types ### 📁 scripts/ Analysis and utility scripts organized by function. #### 📁 analysis/ Core analysis scripts for different types of anti-patterns. - **concurrency_analyzer.py**: Specialized concurrency issue analysis - **analyze_kernel_structure.py**: Kernel structure analysis #### 📁 reporting/ Scripts for generating and viewing reports. - **view_results.py**: Interactive results viewer and reporter #### 📁 utils/ Utility scripts for common tasks. - **quick_summary.py**: Quick summary generation ### 📁 src/ Main project source code (core framework). - **detectors/**: Anti-pattern detection modules - **rules/**: Detection rules and pattern definitions - **utils/**: Utility functions and helpers ### 📁 tests/ Test files and test data. - Unit tests for detection modules - Integration tests - Test data and fixtures ### 📁 tools/ Analysis tools and detectors. #### 📁 detectors/ Main detection tools and configurations. - **detector.py**: Primary anti-pattern detection engine - **config.yaml**: Detection configuration and rules #### 📁 visualizers/ Data visualization and charting tools. - Interactive dashboards - Chart generators - Data plotting utilities #### 📁 exporters/ Data export and format conversion tools. - JSON to other formats - Report generation - Data transformation ### 📁 linux/ Cloned Linux kernel source code for analysis. - Complete kernel source tree - Used for code snippet extraction - Reference for pattern validation ## File Descriptions ### Core Files - **README.md**: Main project documentation and getting started guide - **requirements.txt**: Main project Python dependencies - **requirements-kernel-analysis.txt**: Kernel analysis specific dependencies - **requirements-simple.txt**: Simplified dependencies for basic usage - **.gitignore**: Git ignore patterns for the project ### Configuration Files - **tools/detectors/config.yaml**: Main detection configuration - **tools/detectors/detector.py**: Primary detection engine ## Usage Patterns ### Running Analysis ```bash # Main analysis python tools/detectors/detector.py --clone --output data/results.json # Concurrency analysis python scripts/analysis/concurrency_analyzer.py # View results python scripts/reporting/view_results.py data/results.json ``` ### Generating Reports ```bash # Quick summary python scripts/utils/quick_summary.py # Interactive viewer python scripts/reporting/view_results.py --interactive ``` ### Development ```bash # Install dependencies pip install -r requirements.txt pip install -r requirements-kernel-analysis.txt # Run tests python -m pytest tests/ # Development setup conda activate linux-kernel-anti-pattern-detector ``` ## Best Practices ### Adding New Features 1. **Analysis scripts**: Add to `scripts/analysis/` 2. **Reporting tools**: Add to `scripts/reporting/` 3. **Utilities**: Add to `scripts/utils/` 4. **Core detection**: Add to `src/detectors/` 5. **Configuration**: Update `tools/detectors/config.yaml` ### File Naming Conventions - **Python files**: snake_case (e.g., `concurrency_analyzer.py`) - **Configuration files**: kebab-case (e.g., `kernel-analysis-guide.md`) - **Reports**: Pascal_Case (e.g., `Concurrency_Analysis_Report.md`) ### Data Management - **Raw data**: Store in `data/` - **Processed results**: Store in `data/` - **Reports**: Generate in `reports/` - **Logs**: Store in `data/` ## Maintenance ### Regular Tasks 1. **Update dependencies**: Review and update requirements files 2. **Clean data**: Remove old analysis results periodically 3. **Update kernel**: Refresh the Linux kernel source 4. **Backup reports**: Archive important analysis reports ### Version Control - **Track**: Source code, configuration, documentation - **Ignore**: Analysis results, logs, kernel source (large files) - **Archive**: Important reports and findings --- *This structure is designed to be scalable, maintainable, and easy to navigate. Each directory has a clear purpose and the organization supports both development and research workflows.*