Upload config
Browse files- config.json +5 -9
- configuration_meralion.py +5 -434
config.json
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"MERaLiONForConditionalGeneration"
|
| 4 |
-
],
|
| 5 |
"auto_map": {
|
| 6 |
-
"AutoConfig": "configuration_meralion.MERaLiONConfig"
|
| 7 |
-
"AutoModelForSpeechSeq2Seq": "modeling_meralion.MERaLiONForConditionalGeneration"
|
| 8 |
},
|
| 9 |
"head_dim": 256,
|
| 10 |
"hidden_size": 3584,
|
|
@@ -51,7 +48,7 @@
|
|
| 51 |
],
|
| 52 |
"mask_time_length": 20,
|
| 53 |
"max_length": 448,
|
| 54 |
-
"model_type": "
|
| 55 |
"num_hidden_layers": 32,
|
| 56 |
"num_mel_bins": 80,
|
| 57 |
"pad_token_id": 50257,
|
|
@@ -159,13 +156,12 @@
|
|
| 159 |
"hidden_act": "gelu_pytorch_tanh",
|
| 160 |
"hidden_size": 3584,
|
| 161 |
"intermediate_size": 14336,
|
| 162 |
-
"model_type": "
|
| 163 |
"num_hidden_layers": 42,
|
| 164 |
"num_key_value_heads": 8,
|
| 165 |
"query_pre_attn_scalar": 256,
|
| 166 |
"sliding_window_size": 4096,
|
| 167 |
"torch_dtype": "bfloat16"
|
| 168 |
},
|
| 169 |
-
"torch_dtype": "bfloat16",
|
| 170 |
"transformers_version": "4.46.3"
|
| 171 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_attn_implementation_autoset": true,
|
|
|
|
|
|
|
| 3 |
"auto_map": {
|
| 4 |
+
"AutoConfig": "configuration_meralion.MERaLiONConfig"
|
|
|
|
| 5 |
},
|
| 6 |
"head_dim": 256,
|
| 7 |
"hidden_size": 3584,
|
|
|
|
| 48 |
],
|
| 49 |
"mask_time_length": 20,
|
| 50 |
"max_length": 448,
|
| 51 |
+
"model_type": "whisper",
|
| 52 |
"num_hidden_layers": 32,
|
| 53 |
"num_mel_bins": 80,
|
| 54 |
"pad_token_id": 50257,
|
|
|
|
| 156 |
"hidden_act": "gelu_pytorch_tanh",
|
| 157 |
"hidden_size": 3584,
|
| 158 |
"intermediate_size": 14336,
|
| 159 |
+
"model_type": "gemma2",
|
| 160 |
"num_hidden_layers": 42,
|
| 161 |
"num_key_value_heads": 8,
|
| 162 |
"query_pre_attn_scalar": 256,
|
| 163 |
"sliding_window_size": 4096,
|
| 164 |
"torch_dtype": "bfloat16"
|
| 165 |
},
|
|
|
|
| 166 |
"transformers_version": "4.46.3"
|
| 167 |
+
}
|
configuration_meralion.py
CHANGED
|
@@ -1,442 +1,13 @@
|
|
| 1 |
"""MERaLiON AudioLLM model configuration"""
|
| 2 |
|
| 3 |
-
from
|
| 4 |
-
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
| 5 |
-
|
| 6 |
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
-
from transformers.onnx import OnnxConfig
|
| 8 |
from transformers.utils import logging
|
| 9 |
|
| 10 |
|
| 11 |
-
if TYPE_CHECKING:
|
| 12 |
-
from transformers.feature_extraction_utils import FeatureExtractionMixin
|
| 13 |
-
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
| 14 |
-
from transformers.utils import TensorType
|
| 15 |
-
|
| 16 |
-
|
| 17 |
logger = logging.get_logger(__name__)
|
| 18 |
|
| 19 |
|
| 20 |
-
# fmt: off
|
| 21 |
-
NON_SPEECH_TOKENS = [
|
| 22 |
-
1, 2, 7, 8, 9, 10, 14, 25,
|
| 23 |
-
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
|
| 24 |
-
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
|
| 25 |
-
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
|
| 26 |
-
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
|
| 27 |
-
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
|
| 28 |
-
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
|
| 29 |
-
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
|
| 30 |
-
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
|
| 31 |
-
]
|
| 32 |
-
NON_SPEECH_TOKENS_MULTI = [
|
| 33 |
-
1, 2, 7, 8, 9, 10, 14, 25,
|
| 34 |
-
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
|
| 35 |
-
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
|
| 36 |
-
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
|
| 37 |
-
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
|
| 38 |
-
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
|
| 39 |
-
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
|
| 40 |
-
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
|
| 41 |
-
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
|
| 42 |
-
]
|
| 43 |
-
# fmt: on
|
| 44 |
-
|
| 45 |
-
# Copied from transformers.models.whisper.configuration_whisper.WhisperConfig
|
| 46 |
-
class MERaLiONSpeechConfig(PretrainedConfig):
|
| 47 |
-
r"""
|
| 48 |
-
This is the configuration class to store the configuration of a [`MERaLiONSpeechModel`]. It is used to instantiate a
|
| 49 |
-
MERaLiONSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 50 |
-
with the defaults will yield a similar configuration to that of the MERaLiONSpeech
|
| 51 |
-
[openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
|
| 52 |
-
|
| 53 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 54 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
Args:
|
| 58 |
-
vocab_size (`int`, *optional*, defaults to 51865):
|
| 59 |
-
Vocabulary size of the MERaLiONSpeech model. Defines the number of different tokens that can be represented by the
|
| 60 |
-
`decoder_input_ids` passed when calling [`MERaLiONSpeechModel`]
|
| 61 |
-
num_mel_bins (`int`, *optional*, defaults to 80):
|
| 62 |
-
Number of mel features used per input features. Should correspond to the value used in the
|
| 63 |
-
`MERaLiONSpeechProcessor` class.
|
| 64 |
-
encoder_layers (`int`, *optional*, defaults to 4):
|
| 65 |
-
Number of encoder layers.
|
| 66 |
-
decoder_layers (`int`, *optional*, defaults to 4):
|
| 67 |
-
Number of decoder layers.
|
| 68 |
-
encoder_attention_heads (`int`, *optional*, defaults to 6):
|
| 69 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
| 70 |
-
decoder_attention_heads (`int`, *optional*, defaults to 6):
|
| 71 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
| 72 |
-
encoder_ffn_dim (`int`, *optional*, defaults to 1536):
|
| 73 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
|
| 74 |
-
decoder_ffn_dim (`int`, *optional*, defaults to 1536):
|
| 75 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
| 76 |
-
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
| 77 |
-
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
| 78 |
-
for more details.
|
| 79 |
-
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
| 80 |
-
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
| 81 |
-
for more details.
|
| 82 |
-
decoder_start_token_id (`int`, *optional*, defaults to 50257):
|
| 83 |
-
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
|
| 84 |
-
are provided to the `generate` function. It is used to guide the model`s generation process depending on
|
| 85 |
-
the task.
|
| 86 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
| 87 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 88 |
-
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
| 89 |
-
Whether the model is used as an encoder/decoder or not.
|
| 90 |
-
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
| 91 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 92 |
-
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 93 |
-
d_model (`int`, *optional*, defaults to 384):
|
| 94 |
-
Dimensionality of the layers.
|
| 95 |
-
dropout (`float`, *optional*, defaults to 0.1):
|
| 96 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 97 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 98 |
-
The dropout ratio for the attention probabilities.
|
| 99 |
-
activation_dropout (`float`, *optional*, defaults to 0.0):
|
| 100 |
-
The dropout ratio for activations inside the fully connected layer.
|
| 101 |
-
init_std (`float`, *optional*, defaults to 0.02):
|
| 102 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 103 |
-
scale_embedding (`bool`, *optional*, defaults to False):
|
| 104 |
-
Scale embeddings by diving by sqrt(d_model).
|
| 105 |
-
max_source_positions (`int`, *optional*, defaults to 1500):
|
| 106 |
-
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
|
| 107 |
-
max_target_positions (`int`, *optional*, defaults to 448):
|
| 108 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 109 |
-
just in case (e.g., 512 or 1024 or 2048).
|
| 110 |
-
pad_token_id (`int`, *optional*, defaults to 50256):
|
| 111 |
-
Padding token id.
|
| 112 |
-
bos_token_id (`int`, *optional*, defaults to 50256):
|
| 113 |
-
Begin of stream token id.
|
| 114 |
-
eos_token_id (`int`, *optional*, defaults to 50256):
|
| 115 |
-
End of stream token id.
|
| 116 |
-
suppress_tokens (`List[int]`, *optional*):
|
| 117 |
-
A list containing the non-speech tokens that will be used by the logit processor in the `generate`
|
| 118 |
-
function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
|
| 119 |
-
`multilingual` model.
|
| 120 |
-
begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
|
| 121 |
-
A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
|
| 122 |
-
the token for `" "` (`blank_token_id`) and the `eos_token_id`
|
| 123 |
-
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
|
| 124 |
-
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
|
| 125 |
-
instance of [`MERaLiONSpeechForAudioClassification`].
|
| 126 |
-
classifier_proj_size (`int`, *optional*, defaults to 256):
|
| 127 |
-
Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
|
| 128 |
-
instance of [`MERaLiONSpeechForAudioClassification`].
|
| 129 |
-
apply_spec_augment (`bool`, *optional*, defaults to `False`):
|
| 130 |
-
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
|
| 131 |
-
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
|
| 132 |
-
Recognition](https://arxiv.org/abs/1904.08779).
|
| 133 |
-
mask_time_prob (`float`, *optional*, defaults to 0.05):
|
| 134 |
-
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
|
| 135 |
-
procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
|
| 136 |
-
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
|
| 137 |
-
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
|
| 138 |
-
actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
|
| 139 |
-
mask_time_length (`int`, *optional*, defaults to 10):
|
| 140 |
-
Length of vector span along the time axis.
|
| 141 |
-
mask_time_min_masks (`int`, *optional*, defaults to 2),:
|
| 142 |
-
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
|
| 143 |
-
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
|
| 144 |
-
mask_time_min_masks''
|
| 145 |
-
mask_feature_prob (`float`, *optional*, defaults to 0.0):
|
| 146 |
-
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
|
| 147 |
-
masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
|
| 148 |
-
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
|
| 149 |
-
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
|
| 150 |
-
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
|
| 151 |
-
True`.
|
| 152 |
-
mask_feature_length (`int`, *optional*, defaults to 10):
|
| 153 |
-
Length of vector span along the feature axis.
|
| 154 |
-
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
|
| 155 |
-
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
|
| 156 |
-
step, irrespectively of `mask_feature_prob`. Only relevant if
|
| 157 |
-
`mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
|
| 158 |
-
median_filter_width (`int`, *optional*, defaults to 7):
|
| 159 |
-
Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
|
| 160 |
-
Should be an odd number.
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
model_type = "meralion_speech_encoder"
|
| 164 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 165 |
-
attribute_map = {
|
| 166 |
-
"num_key_value_heads": "encoder_attention_heads",
|
| 167 |
-
"num_attention_heads": "encoder_attention_heads",
|
| 168 |
-
"hidden_size": "d_model",
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
def __init__(
|
| 172 |
-
self,
|
| 173 |
-
vocab_size=51865,
|
| 174 |
-
num_mel_bins=80,
|
| 175 |
-
encoder_layers=4,
|
| 176 |
-
encoder_attention_heads=6,
|
| 177 |
-
decoder_layers=4,
|
| 178 |
-
decoder_attention_heads=6,
|
| 179 |
-
decoder_ffn_dim=1536,
|
| 180 |
-
encoder_ffn_dim=1536,
|
| 181 |
-
encoder_layerdrop=0.0,
|
| 182 |
-
decoder_layerdrop=0.0,
|
| 183 |
-
decoder_start_token_id=50257,
|
| 184 |
-
use_cache=True,
|
| 185 |
-
is_encoder_decoder=True,
|
| 186 |
-
activation_function="gelu",
|
| 187 |
-
d_model=384,
|
| 188 |
-
dropout=0.0,
|
| 189 |
-
attention_dropout=0.0,
|
| 190 |
-
activation_dropout=0.0,
|
| 191 |
-
init_std=0.02,
|
| 192 |
-
scale_embedding=False,
|
| 193 |
-
max_source_positions=1500,
|
| 194 |
-
max_target_positions=448,
|
| 195 |
-
pad_token_id=50256,
|
| 196 |
-
bos_token_id=50256,
|
| 197 |
-
eos_token_id=50256,
|
| 198 |
-
suppress_tokens=None,
|
| 199 |
-
begin_suppress_tokens=[220, 50256],
|
| 200 |
-
use_weighted_layer_sum=False,
|
| 201 |
-
classifier_proj_size=256,
|
| 202 |
-
apply_spec_augment=False,
|
| 203 |
-
mask_time_prob=0.05,
|
| 204 |
-
mask_time_length=10,
|
| 205 |
-
mask_time_min_masks=2,
|
| 206 |
-
mask_feature_prob=0.0,
|
| 207 |
-
mask_feature_length=10,
|
| 208 |
-
mask_feature_min_masks=0,
|
| 209 |
-
median_filter_width=7,
|
| 210 |
-
**kwargs,
|
| 211 |
-
):
|
| 212 |
-
self.vocab_size = vocab_size
|
| 213 |
-
self.num_mel_bins = num_mel_bins
|
| 214 |
-
self.d_model = d_model
|
| 215 |
-
self.encoder_layers = encoder_layers
|
| 216 |
-
self.encoder_attention_heads = encoder_attention_heads
|
| 217 |
-
self.decoder_layers = decoder_layers
|
| 218 |
-
self.decoder_attention_heads = decoder_attention_heads
|
| 219 |
-
self.decoder_ffn_dim = decoder_ffn_dim
|
| 220 |
-
self.encoder_ffn_dim = encoder_ffn_dim
|
| 221 |
-
self.dropout = dropout
|
| 222 |
-
self.attention_dropout = attention_dropout
|
| 223 |
-
self.activation_dropout = activation_dropout
|
| 224 |
-
self.activation_function = activation_function
|
| 225 |
-
self.init_std = init_std
|
| 226 |
-
self.encoder_layerdrop = encoder_layerdrop
|
| 227 |
-
self.decoder_layerdrop = decoder_layerdrop
|
| 228 |
-
self.use_cache = use_cache
|
| 229 |
-
self.num_hidden_layers = encoder_layers
|
| 230 |
-
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
| 231 |
-
self.max_source_positions = max_source_positions
|
| 232 |
-
self.max_target_positions = max_target_positions
|
| 233 |
-
|
| 234 |
-
# Audio Classification-specific parameters. Feel free to ignore for other classes.
|
| 235 |
-
self.classifier_proj_size = classifier_proj_size
|
| 236 |
-
self.use_weighted_layer_sum = use_weighted_layer_sum
|
| 237 |
-
|
| 238 |
-
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
| 239 |
-
self.apply_spec_augment = apply_spec_augment
|
| 240 |
-
self.mask_time_prob = mask_time_prob
|
| 241 |
-
self.mask_time_length = mask_time_length
|
| 242 |
-
self.mask_time_min_masks = mask_time_min_masks
|
| 243 |
-
self.mask_feature_prob = mask_feature_prob
|
| 244 |
-
self.mask_feature_length = mask_feature_length
|
| 245 |
-
self.mask_feature_min_masks = mask_feature_min_masks
|
| 246 |
-
|
| 247 |
-
self.median_filter_width = median_filter_width
|
| 248 |
-
|
| 249 |
-
super().__init__(
|
| 250 |
-
pad_token_id=pad_token_id,
|
| 251 |
-
bos_token_id=bos_token_id,
|
| 252 |
-
eos_token_id=eos_token_id,
|
| 253 |
-
is_encoder_decoder=is_encoder_decoder,
|
| 254 |
-
decoder_start_token_id=decoder_start_token_id,
|
| 255 |
-
suppress_tokens=suppress_tokens,
|
| 256 |
-
begin_suppress_tokens=begin_suppress_tokens,
|
| 257 |
-
**kwargs,
|
| 258 |
-
)
|
| 259 |
-
@property
|
| 260 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 261 |
-
common_inputs = OrderedDict(
|
| 262 |
-
[
|
| 263 |
-
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
|
| 264 |
-
]
|
| 265 |
-
)
|
| 266 |
-
if self.use_past:
|
| 267 |
-
common_inputs["decoder_input_ids"] = {0: "batch"}
|
| 268 |
-
else:
|
| 269 |
-
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
| 270 |
-
|
| 271 |
-
if self.use_past:
|
| 272 |
-
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
| 273 |
-
|
| 274 |
-
return common_inputs
|
| 275 |
-
|
| 276 |
-
def generate_dummy_inputs(
|
| 277 |
-
self,
|
| 278 |
-
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
|
| 279 |
-
batch_size: int = -1,
|
| 280 |
-
seq_length: int = -1,
|
| 281 |
-
is_pair: bool = False,
|
| 282 |
-
framework: Optional["TensorType"] = None,
|
| 283 |
-
sampling_rate: int = 22050,
|
| 284 |
-
time_duration: float = 5.0,
|
| 285 |
-
frequency: int = 220,
|
| 286 |
-
) -> Mapping[str, Any]:
|
| 287 |
-
dummy_inputs = OrderedDict()
|
| 288 |
-
encoder_inputs = OnnxConfig.generate_dummy_inputs(
|
| 289 |
-
self,
|
| 290 |
-
preprocessor=preprocessor.feature_extractor,
|
| 291 |
-
batch_size=batch_size,
|
| 292 |
-
framework=framework,
|
| 293 |
-
sampling_rate=sampling_rate,
|
| 294 |
-
time_duration=time_duration,
|
| 295 |
-
frequency=frequency,
|
| 296 |
-
)
|
| 297 |
-
encoder_sequence_length = encoder_inputs["input_features"].shape[2]
|
| 298 |
-
seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
|
| 299 |
-
|
| 300 |
-
decoder_inputs = super().generate_dummy_inputs(
|
| 301 |
-
preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
|
| 305 |
-
dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
|
| 306 |
-
|
| 307 |
-
if "past_key_values" in decoder_inputs:
|
| 308 |
-
dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
|
| 309 |
-
|
| 310 |
-
return dummy_inputs
|
| 311 |
-
|
| 312 |
-
@property
|
| 313 |
-
def atol_for_validation(self) -> float:
|
| 314 |
-
return 1e-3
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
# Copied from transformers.models.gemma2.configuration_gemma2.Gemma2Config
|
| 318 |
-
class MERaLiONTextConfig(PretrainedConfig):
|
| 319 |
-
r"""
|
| 320 |
-
This is the configuration class to store the configuration of a [`MERaLiONTextModel`]. It is used to instantiate an MERaLiONText
|
| 321 |
-
model according to the specified arguments, defining the model architecture.
|
| 322 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 323 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 324 |
-
Args:
|
| 325 |
-
vocab_size (`int`, *optional*, defaults to 256000):
|
| 326 |
-
Vocabulary size of the MERaLiONText model. Defines the number of different tokens that can be represented by the
|
| 327 |
-
`inputs_ids` passed when calling [`MERaLiONTextModel`]
|
| 328 |
-
hidden_size (`int`, *optional*, defaults to 3072):
|
| 329 |
-
Dimension of the hidden representations.
|
| 330 |
-
intermediate_size (`int`, *optional*, defaults to 24576):
|
| 331 |
-
Dimension of the MLP representations.
|
| 332 |
-
num_hidden_layers (`int`, *optional*, defaults to 28):
|
| 333 |
-
Number of hidden layers in the Transformer decoder.
|
| 334 |
-
num_attention_heads (`int`, *optional*, defaults to 16):
|
| 335 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
| 336 |
-
num_key_value_heads (`int`, *optional*, defaults to 16):
|
| 337 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 338 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 339 |
-
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 340 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 341 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
| 342 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 343 |
-
`num_attention_heads`.
|
| 344 |
-
head_dim (`int`, *optional*, defaults to 256):
|
| 345 |
-
The attention head dimension.
|
| 346 |
-
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 347 |
-
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
|
| 348 |
-
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
|
| 349 |
-
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
| 350 |
-
The maximum sequence length that this model might ever be used with.
|
| 351 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 352 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 353 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 354 |
-
The epsilon used by the rms normalization layers.
|
| 355 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
| 356 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 357 |
-
relevant if `config.is_decoder=True`.
|
| 358 |
-
pad_token_id (`int`, *optional*, defaults to 0):
|
| 359 |
-
Padding token id.
|
| 360 |
-
eos_token_id (`int`, *optional*, defaults to 1):
|
| 361 |
-
End of stream token id.
|
| 362 |
-
bos_token_id (`int`, *optional*, defaults to 2):
|
| 363 |
-
Beginning of stream token id.
|
| 364 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
| 365 |
-
Whether to tie weight embeddings
|
| 366 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 367 |
-
The base period of the RoPE embeddings.
|
| 368 |
-
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 369 |
-
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 370 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 371 |
-
The dropout ratio for the attention probabilities.
|
| 372 |
-
query_pre_attn_scalar (`float`, *optional*, defaults to 224): scaling factor used on the attention scores
|
| 373 |
-
sliding_window (`int`, *optional*, defaults to 4096): in MERaLiONText, every other layer uses sliding window attention. This is the
|
| 374 |
-
size of the sliding window.
|
| 375 |
-
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
|
| 376 |
-
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
|
| 377 |
-
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
|
| 378 |
-
"""
|
| 379 |
-
|
| 380 |
-
model_type = "meralion_text_decoder"
|
| 381 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 382 |
-
|
| 383 |
-
def __init__(
|
| 384 |
-
self,
|
| 385 |
-
vocab_size=256000,
|
| 386 |
-
hidden_size=3072,
|
| 387 |
-
intermediate_size=24576,
|
| 388 |
-
num_hidden_layers=28,
|
| 389 |
-
num_attention_heads=16,
|
| 390 |
-
num_key_value_heads=16,
|
| 391 |
-
head_dim=256,
|
| 392 |
-
hidden_activation="gelu_pytorch_tanh",
|
| 393 |
-
max_position_embeddings=8192,
|
| 394 |
-
initializer_range=0.02,
|
| 395 |
-
rms_norm_eps=1e-6,
|
| 396 |
-
use_cache=True,
|
| 397 |
-
pad_token_id=0,
|
| 398 |
-
eos_token_id=1,
|
| 399 |
-
bos_token_id=2,
|
| 400 |
-
tie_word_embeddings=True,
|
| 401 |
-
rope_theta=10000.0,
|
| 402 |
-
attention_bias=False,
|
| 403 |
-
attention_dropout=0.0,
|
| 404 |
-
query_pre_attn_scalar=224,
|
| 405 |
-
sliding_window=4096,
|
| 406 |
-
final_logit_softcapping=30.0,
|
| 407 |
-
attn_logit_softcapping=50.0,
|
| 408 |
-
cache_implementation="hybrid",
|
| 409 |
-
**kwargs,
|
| 410 |
-
):
|
| 411 |
-
super().__init__(
|
| 412 |
-
pad_token_id=pad_token_id,
|
| 413 |
-
bos_token_id=bos_token_id,
|
| 414 |
-
eos_token_id=eos_token_id,
|
| 415 |
-
tie_word_embeddings=tie_word_embeddings,
|
| 416 |
-
**kwargs,
|
| 417 |
-
)
|
| 418 |
-
self.vocab_size = vocab_size
|
| 419 |
-
self.max_position_embeddings = max_position_embeddings
|
| 420 |
-
self.hidden_size = hidden_size
|
| 421 |
-
self.intermediate_size = intermediate_size
|
| 422 |
-
self.num_hidden_layers = num_hidden_layers
|
| 423 |
-
self.num_attention_heads = num_attention_heads
|
| 424 |
-
self.head_dim = head_dim
|
| 425 |
-
self.num_key_value_heads = num_key_value_heads
|
| 426 |
-
self.initializer_range = initializer_range
|
| 427 |
-
self.rms_norm_eps = rms_norm_eps
|
| 428 |
-
self.use_cache = use_cache
|
| 429 |
-
self.rope_theta = rope_theta
|
| 430 |
-
self.attention_bias = attention_bias
|
| 431 |
-
self.attention_dropout = attention_dropout
|
| 432 |
-
self.hidden_activation = hidden_activation
|
| 433 |
-
self.query_pre_attn_scalar = query_pre_attn_scalar
|
| 434 |
-
self.sliding_window = sliding_window
|
| 435 |
-
self.final_logit_softcapping = final_logit_softcapping
|
| 436 |
-
self.attn_logit_softcapping = attn_logit_softcapping
|
| 437 |
-
self.cache_implementation = cache_implementation
|
| 438 |
-
|
| 439 |
-
|
| 440 |
class MERaLiONConfig(PretrainedConfig):
|
| 441 |
r"""
|
| 442 |
This is the configuration class to store the configuration of a [`MERaLiONForConditionalGeneration`]. It is used to instantiate an
|
|
@@ -468,9 +39,9 @@ class MERaLiONConfig(PretrainedConfig):
|
|
| 468 |
):
|
| 469 |
|
| 470 |
if isinstance(speech_config, dict):
|
| 471 |
-
speech_config =
|
| 472 |
elif speech_config is None:
|
| 473 |
-
speech_config =
|
| 474 |
d_model=1280,
|
| 475 |
encoder_attention_heads=20,
|
| 476 |
encoder_ffn_dim=5120,
|
|
@@ -485,9 +56,9 @@ class MERaLiONConfig(PretrainedConfig):
|
|
| 485 |
self.speech_config = speech_config
|
| 486 |
|
| 487 |
if isinstance(text_config, dict):
|
| 488 |
-
text_config =
|
| 489 |
elif text_config is None:
|
| 490 |
-
text_config =
|
| 491 |
|
| 492 |
self.text_config = text_config
|
| 493 |
|
|
|
|
| 1 |
"""MERaLiON AudioLLM model configuration"""
|
| 2 |
|
| 3 |
+
from transformers import Gemma2Config, WhisperConfig
|
|
|
|
|
|
|
| 4 |
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
| 5 |
from transformers.utils import logging
|
| 6 |
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
logger = logging.get_logger(__name__)
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
class MERaLiONConfig(PretrainedConfig):
|
| 12 |
r"""
|
| 13 |
This is the configuration class to store the configuration of a [`MERaLiONForConditionalGeneration`]. It is used to instantiate an
|
|
|
|
| 39 |
):
|
| 40 |
|
| 41 |
if isinstance(speech_config, dict):
|
| 42 |
+
speech_config = WhisperConfig(**speech_config)
|
| 43 |
elif speech_config is None:
|
| 44 |
+
speech_config = WhisperConfig(
|
| 45 |
d_model=1280,
|
| 46 |
encoder_attention_heads=20,
|
| 47 |
encoder_ffn_dim=5120,
|
|
|
|
| 56 |
self.speech_config = speech_config
|
| 57 |
|
| 58 |
if isinstance(text_config, dict):
|
| 59 |
+
text_config = Gemma2Config(**text_config)
|
| 60 |
elif text_config is None:
|
| 61 |
+
text_config = Gemma2Config()
|
| 62 |
|
| 63 |
self.text_config = text_config
|
| 64 |
|