Lyte commited on
Commit
35f4069
·
verified ·
1 Parent(s): 7f48b06

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ary
4
+ license: apache-2.0
5
+ datasets:
6
+ - Lyte/DarijaTTS-clean
7
+ metrics:
8
+ - wer
9
+ base_model:
10
+ - openai/whisper-small
11
+ pipeline_tag: automatic-speech-recognition
12
+ library_name: transformers
13
+ tags:
14
+ - asr
15
+ - darija
16
+ ---
17
+ # Whisper Small Darija - Lyte (Yassine Ennour)
18
+
19
+ This is a fine-tuned version of OpenAI's `whisper-small` model on the DarijaTTS-clean dataset. The goal of this project is to improve automatic speech recognition (ASR) for Moroccan Darija (ary).
20
+
21
+ ## Model Details
22
+
23
+ - **Model Name**: [`Lyte/Whisper-Small-Darija`](https://huggingface.co/Lyte/Whisper-Small-Darija)
24
+ - **Base Model**: [`openai/whisper-small`](https://huggingface.co/openai/whisper-small)
25
+ - **Fine-Tuned On**: [`Lyte/DarijaTTS-clean`](https://huggingface.co/datasets/Lyte/DarijaTTS-clean)
26
+ - **Language**: Moroccan Darija (ary)
27
+ - **Task**: Automatic Speech Recognition (ASR)
28
+ - **Dataset Size**: 19.9k training samples, 1k test samples
29
+
30
+ ## Training Progress
31
+
32
+ Training was started but interrupted. The training will be resumed from step **600**. Below is the progress so far:
33
+
34
+ | Step | Training Loss | Validation Loss | WER |
35
+ |------|--------------|----------------|-----|
36
+ | 200 | 1.0142 | 1.0804 | 129.35 |
37
+ | 400 | 0.8288 | 0.9905 | 72.44 |
38
+ | 600 | 0.7618 | 0.9656 | 70.41 |
39
+
40
+ ## Usage
41
+
42
+ You can use this model with Hugging Face's `transformers` library:
43
+
44
+ ```python
45
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
46
+ import torch
47
+
48
+ model_id = "Lyte/whisper-small-darija"
49
+ processor = WhisperProcessor.from_pretrained(model_id)
50
+ model = WhisperForConditionalGeneration.from_pretrained(model_id)
51
+
52
+ # Load an audio file and preprocess
53
+ input_features = processor("path_to_audio.wav", return_tensors="pt").input_features
54
+
55
+ generated_ids = model.generate(input_features)
56
+ predicted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
57
+
58
+ print(predicted_text)
59
+ ```
60
+
61
+ ## Next Steps
62
+
63
+ - **Resume training** from step 600 to further improve WER.
64
+ - **Optimize hyperparameters** to reduce validation loss.
65
+ - **Expand dataset** for better generalization.
66
+
67
+ ## Acknowledgments
68
+
69
+ Special thanks to OpenAI for Whisper and Hugging Face for their amazing platform. This model is built as part of my ongoing research in ASR for Darija.
70
+
71
+ ---
72
+ For updates and more details, stay tuned to this repository!