--- library_name: transformers license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/voxconverse model-index: - name: speaker-segmentation-0.2-vox results: [] --- # speaker-segmentation-0.2-vox This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/voxconverse dataset. It achieves the following results on the evaluation set: - Loss: 0.2745 - Model Preparation Time: 0.0069 - Der: 0.0853 - False Alarm: 0.0344 - Missed Detection: 0.0236 - Confusion: 0.0273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.2419 | 1.0 | 791 | 0.2628 | 0.0069 | 0.0909 | 0.0363 | 0.0244 | 0.0302 | | 0.2356 | 2.0 | 1582 | 0.2557 | 0.0069 | 0.0904 | 0.0361 | 0.0237 | 0.0306 | | 0.2129 | 3.0 | 2373 | 0.2555 | 0.0069 | 0.0864 | 0.0334 | 0.0249 | 0.0280 | | 0.2085 | 4.0 | 3164 | 0.2436 | 0.0069 | 0.0849 | 0.0306 | 0.0275 | 0.0269 | | 0.1946 | 5.0 | 3955 | 0.2571 | 0.0069 | 0.0857 | 0.0330 | 0.0248 | 0.0278 | | 0.1863 | 6.0 | 4746 | 0.2503 | 0.0069 | 0.0860 | 0.0356 | 0.0231 | 0.0273 | | 0.1763 | 7.0 | 5537 | 0.2526 | 0.0069 | 0.0858 | 0.0351 | 0.0234 | 0.0273 | | 0.1783 | 8.0 | 6328 | 0.2571 | 0.0069 | 0.0857 | 0.0319 | 0.0253 | 0.0285 | | 0.1704 | 9.0 | 7119 | 0.2582 | 0.0069 | 0.0861 | 0.0326 | 0.0253 | 0.0281 | | 0.1719 | 10.0 | 7910 | 0.2626 | 0.0069 | 0.0862 | 0.0323 | 0.0259 | 0.0281 | | 0.1625 | 11.0 | 8701 | 0.2713 | 0.0069 | 0.0860 | 0.0330 | 0.0245 | 0.0284 | | 0.1668 | 12.0 | 9492 | 0.2753 | 0.0069 | 0.0857 | 0.0345 | 0.0235 | 0.0277 | | 0.1579 | 13.0 | 10283 | 0.2741 | 0.0069 | 0.0850 | 0.0345 | 0.0233 | 0.0271 | | 0.1609 | 14.0 | 11074 | 0.2748 | 0.0069 | 0.0851 | 0.0344 | 0.0235 | 0.0272 | | 0.1637 | 15.0 | 11865 | 0.2745 | 0.0069 | 0.0853 | 0.0344 | 0.0236 | 0.0273 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1