GAIR
/

Safetensors
qwen2
File size: 3,459 Bytes
9510d41
 
 
 
 
b2f0ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-32B-Instruct
---
# LIMO: Less Is More for Reasoning 🚀

This is the **updated version (v2)** of the LIMO model, corresponding to the latest paper version as of July 30, 2025.

## Model Information

| Model | Backbone | Size | 
|-------|----------|------|
| LIMO-v2 | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 32B |

## Previous Version

If you need the original LIMO model (corresponding to the initial paper version), you can access it at:
- **LIMO v1**: [`GAIR/LIMO`](https://huggingface.co/GAIR/LIMO)

## Quick Start

Our model is fine-tuned on [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) and is compatible with most mainstream frameworks like [HF Transformers](https://github.com/huggingface/transformers), [VLLM](https://github.com/vllm-project/vllm), [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) and etc.

### Using HF Transformers

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Initialize model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "GAIR/LIMO-v2",
    torch_dtype="auto",
    trust_remote_code=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("GAIR/LIMO-v2", trust_remote_code=True)

# Prepare input messages
messages = [
    {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
    {"role": "user", "content": "What is the result of 1+1?"}
]

# Format input using chat template
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

# Tokenize input
inputs = tokenizer(text, return_tensors="pt").to(model.device)

# Generate response
outputs = model.generate(
    **inputs,
    max_new_tokens=32768,
    temperature=0.7,
    top_p=0.95,
    do_sample=True
)

# Decode and print response
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)
```

### Using VLLM

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

# Initialize the model
llm = LLM(
    model="GAIR/LIMO-v2",
    tensor_parallel_size=4,  # adjust based on available GPUs
    trust_remote_code=True,
    swap_space=60,
    gpu_memory_utilization=0.96,
)

# Prepare input messages
messages = [
    {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
    {"role": "user", "content": "What is the result of 1+1?"}
]

# Setup tokenizer
tokenizer = AutoTokenizer.from_pretrained("GAIR/LIMO-v2", trust_remote_code=True)
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

# Configure generation parameters
sampling_params = SamplingParams(
    temperature=0.7,
    max_tokens=32768,
    top_p=0.95,
)

# Generate response
output = llm.generate(text, sampling_params)
print(output[0].outputs[0].text)
```



## Citation

```bibtex
@misc{ye2025limoreasoning,
      title={LIMO: Less is More for Reasoning}, 
      author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
      year={2025},
      eprint={2502.03387},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.03387}, 
}
```

For more details and training code, please visit our [GitHub repository](https://github.com/GAIR-NLP/LIMO).