--- base_model: unsloth/gemma-3n-e4b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3n license: apache-2.0 language: - en --- This finetuned model is specialized in STEM like LCB, CodeForce, AIME24, AIME25, AMC23, MATH500. Note: - Currently only text is supported. - Ollama: ollama run hf.co/unsloth/gemma-3n-E4B-it-GGUF:Q4_K_XL - auto-sets correct chat template and settings - Set temperature = 1.0, top_k = 64, top_p = 0.95, min_p = 0.0 - Gemma 3n max tokens (context length): 32K. Gemma 3n chat template: Use unsloth inference ``` !pip install --upgrade transformers import torch from transformers import pipeline model_id = "EpistemeAI/Hercules-Coder-E4B-it" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto" ) print(pipe("Write me a Python function to calculate the nth fibonacci number.")) ``` Benchmark results (5 shot): | Tasks |Version|Filter|n-shot| Metric | |Value | |-------------|------:|------|-----:|--------|---|-----:| |arc_challenge| 1|none | 5|acc |↑ |0.5759| |hellaswag | 1|none | 5|acc |↑ |0.7651| |winogrande | 1|none | 5|acc |↑ |0.7526| GPQA Diamond result | Tasks |Version| Filter |n-shot| Metric | |Value | |---------------------|------:|-----------|-----:|--------|---|-----:| |gpqa_diamond_zeroshot| 1|none | 0|acc |↑ |0.2516| | | |none | 0|acc_norm|↑ |0.2516| # Uploaded finetuned model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3n-e4b-unsloth-bnb-4bit This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Citations ``` @misc{liu2025rstarcoderscalingcompetitivecode, title={rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset}, author={Yifei Liu and Li Lyna Zhang and Yi Zhu and Bingcheng Dong and Xudong Zhou and Ning Shang and Fan Yang and Mao Yang}, year={2025}, eprint={2505.21297}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.21297}, } ```