{ "best_metric": 0.8963138930200525, "best_model_checkpoint": "DocLayNet/lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1/checkpoint-1600", "epoch": 0.8528784648187633, "eval_steps": 100, "global_step": 1600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.053304904051172705, "eval_accuracy": 0.6684599798377034, "eval_f1": 0.6684599798377034, "eval_loss": 0.9209221005439758, "eval_precision": 0.6684599798377034, "eval_recall": 0.6684599798377034, "eval_runtime": 41.8743, "eval_samples_per_second": 38.377, "eval_steps_per_second": 2.412, "step": 100 }, { "epoch": 0.10660980810234541, "eval_accuracy": 0.8154451176300318, "eval_f1": 0.8154451176300318, "eval_loss": 0.6488999724388123, "eval_precision": 0.8154451176300318, "eval_recall": 0.8154451176300318, "eval_runtime": 44.2144, "eval_samples_per_second": 36.346, "eval_steps_per_second": 2.284, "step": 200 }, { "epoch": 0.15991471215351813, "eval_accuracy": 0.7420323994130975, "eval_f1": 0.7420323994130975, "eval_loss": 0.7198283076286316, "eval_precision": 0.7420323994130975, "eval_recall": 0.7420323994130975, "eval_runtime": 41.064, "eval_samples_per_second": 39.134, "eval_steps_per_second": 2.46, "step": 300 }, { "epoch": 0.21321961620469082, "eval_accuracy": 0.7961212532564105, "eval_f1": 0.7961212532564104, "eval_loss": 0.5486767292022705, "eval_precision": 0.7961212532564105, "eval_recall": 0.7961212532564105, "eval_runtime": 43.0362, "eval_samples_per_second": 37.341, "eval_steps_per_second": 2.347, "step": 400 }, { "epoch": 0.26652452025586354, "grad_norm": 8.946574211120605, "learning_rate": 1.4722814498933904e-05, "loss": 0.736, "step": 500 }, { "epoch": 0.26652452025586354, "eval_accuracy": 0.8669088803936639, "eval_f1": 0.8669088803936638, "eval_loss": 0.44298624992370605, "eval_precision": 0.8669088803936639, "eval_recall": 0.8669088803936639, "eval_runtime": 42.8219, "eval_samples_per_second": 37.527, "eval_steps_per_second": 2.359, "step": 500 }, { "epoch": 0.31982942430703626, "eval_accuracy": 0.8614091648617086, "eval_f1": 0.8614091648617086, "eval_loss": 0.4405972361564636, "eval_precision": 0.8614091648617086, "eval_recall": 0.8614091648617086, "eval_runtime": 46.0068, "eval_samples_per_second": 34.93, "eval_steps_per_second": 2.195, "step": 600 }, { "epoch": 0.373134328358209, "eval_accuracy": 0.865092277441185, "eval_f1": 0.865092277441185, "eval_loss": 0.41120249032974243, "eval_precision": 0.865092277441185, "eval_recall": 0.865092277441185, "eval_runtime": 43.2183, "eval_samples_per_second": 37.183, "eval_steps_per_second": 2.337, "step": 700 }, { "epoch": 0.42643923240938164, "eval_accuracy": 0.8710710970485193, "eval_f1": 0.8710710970485193, "eval_loss": 0.41007000207901, "eval_precision": 0.8710710970485193, "eval_recall": 0.8710710970485193, "eval_runtime": 41.5981, "eval_samples_per_second": 38.632, "eval_steps_per_second": 2.428, "step": 800 }, { "epoch": 0.47974413646055436, "eval_accuracy": 0.8397596494555182, "eval_f1": 0.8397596494555181, "eval_loss": 0.469059020280838, "eval_precision": 0.8397596494555182, "eval_recall": 0.8397596494555182, "eval_runtime": 42.8271, "eval_samples_per_second": 37.523, "eval_steps_per_second": 2.358, "step": 900 }, { "epoch": 0.5330490405117271, "grad_norm": 1.78385591506958, "learning_rate": 9.392324093816631e-06, "loss": 0.4575, "step": 1000 }, { "epoch": 0.5330490405117271, "eval_accuracy": 0.8009322566800083, "eval_f1": 0.8009322566800084, "eval_loss": 0.4894373416900635, "eval_precision": 0.8009322566800083, "eval_recall": 0.8009322566800083, "eval_runtime": 45.5517, "eval_samples_per_second": 35.279, "eval_steps_per_second": 2.217, "step": 1000 }, { "epoch": 0.5863539445628998, "eval_accuracy": 0.8552706438959147, "eval_f1": 0.8552706438959147, "eval_loss": 0.427526593208313, "eval_precision": 0.8552706438959147, "eval_recall": 0.8552706438959147, "eval_runtime": 41.1754, "eval_samples_per_second": 39.028, "eval_steps_per_second": 2.453, "step": 1100 }, { "epoch": 0.6396588486140725, "eval_accuracy": 0.88568377134758, "eval_f1": 0.88568377134758, "eval_loss": 0.3613550066947937, "eval_precision": 0.88568377134758, "eval_recall": 0.88568377134758, "eval_runtime": 43.3876, "eval_samples_per_second": 37.038, "eval_steps_per_second": 2.328, "step": 1200 }, { "epoch": 0.6929637526652452, "eval_accuracy": 0.8431832473274976, "eval_f1": 0.8431832473274976, "eval_loss": 0.45708218216896057, "eval_precision": 0.8431832473274976, "eval_recall": 0.8431832473274976, "eval_runtime": 43.4109, "eval_samples_per_second": 37.018, "eval_steps_per_second": 2.327, "step": 1300 }, { "epoch": 0.746268656716418, "eval_accuracy": 0.8377234571351573, "eval_f1": 0.8377234571351573, "eval_loss": 0.4477834701538086, "eval_precision": 0.8377234571351573, "eval_recall": 0.8377234571351573, "eval_runtime": 41.9819, "eval_samples_per_second": 38.278, "eval_steps_per_second": 2.406, "step": 1400 }, { "epoch": 0.7995735607675906, "grad_norm": 3.844151496887207, "learning_rate": 4.061833688699361e-06, "loss": 0.3718, "step": 1500 }, { "epoch": 0.7995735607675906, "eval_accuracy": 0.8324133869663729, "eval_f1": 0.8324133869663729, "eval_loss": 0.43807488679885864, "eval_precision": 0.8324133869663729, "eval_recall": 0.8324133869663729, "eval_runtime": 44.8422, "eval_samples_per_second": 35.837, "eval_steps_per_second": 2.252, "step": 1500 }, { "epoch": 0.8528784648187633, "eval_accuracy": 0.8963138930200525, "eval_f1": 0.8963138930200525, "eval_loss": 0.3266744911670685, "eval_precision": 0.8963138930200525, "eval_recall": 0.8963138930200525, "eval_runtime": 42.399, "eval_samples_per_second": 37.902, "eval_steps_per_second": 2.382, "step": 1600 } ], "logging_steps": 500, "max_steps": 1876, "num_input_tokens_seen": 0, "num_train_epochs": 1, "save_steps": 100, "stateful_callbacks": { "TrainerControl": { "args": { "should_epoch_stop": false, "should_evaluate": false, "should_log": false, "should_save": true, "should_training_stop": false }, "attributes": {} } }, "total_flos": 3560604657254400.0, "train_batch_size": 8, "trial_name": null, "trial_params": null }