--- license: mit base_model: nielsr/lilt-xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1 results: [] --- # lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1 This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4110 - Precision: 0.8507 - Recall: 0.8507 - F1: 0.8507 - Accuracy: 0.8507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.0533 | 100 | 0.9209 | 0.6685 | 0.6685 | 0.6685 | 0.6685 | | No log | 0.1066 | 200 | 0.6489 | 0.8154 | 0.8154 | 0.8154 | 0.8154 | | No log | 0.1599 | 300 | 0.7198 | 0.7420 | 0.7420 | 0.7420 | 0.7420 | | No log | 0.2132 | 400 | 0.5487 | 0.7961 | 0.7961 | 0.7961 | 0.7961 | | 0.736 | 0.2665 | 500 | 0.4430 | 0.8669 | 0.8669 | 0.8669 | 0.8669 | | 0.736 | 0.3198 | 600 | 0.4406 | 0.8614 | 0.8614 | 0.8614 | 0.8614 | | 0.736 | 0.3731 | 700 | 0.4112 | 0.8651 | 0.8651 | 0.8651 | 0.8651 | | 0.736 | 0.4264 | 800 | 0.4101 | 0.8711 | 0.8711 | 0.8711 | 0.8711 | | 0.736 | 0.4797 | 900 | 0.4691 | 0.8398 | 0.8398 | 0.8398 | 0.8398 | | 0.4575 | 0.5330 | 1000 | 0.4894 | 0.8009 | 0.8009 | 0.8009 | 0.8009 | | 0.4575 | 0.5864 | 1100 | 0.4275 | 0.8553 | 0.8553 | 0.8553 | 0.8553 | | 0.4575 | 0.6397 | 1200 | 0.3614 | 0.8857 | 0.8857 | 0.8857 | 0.8857 | | 0.4575 | 0.6930 | 1300 | 0.4571 | 0.8432 | 0.8432 | 0.8432 | 0.8432 | | 0.4575 | 0.7463 | 1400 | 0.4478 | 0.8377 | 0.8377 | 0.8377 | 0.8377 | | 0.3718 | 0.7996 | 1500 | 0.4381 | 0.8324 | 0.8324 | 0.8324 | 0.8324 | | 0.3718 | 0.8529 | 1600 | 0.3267 | 0.8963 | 0.8963 | 0.8963 | 0.8963 | | 0.3718 | 0.9062 | 1700 | 0.3470 | 0.8890 | 0.8890 | 0.8890 | 0.8890 | | 0.3718 | 0.9595 | 1800 | 0.4110 | 0.8507 | 0.8507 | 0.8507 | 0.8507 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1