DeeWoo commited on
Commit
a2c11cc
·
verified ·
1 Parent(s): d0375a6

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/share/home/dwu/local_models/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float16",
26
+ "transformers_version": "4.44.2",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.44.2"
10
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1576
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3158a908c9897aeed7d5b4ed61642421a29d4d23d1edec7b27029af252367f1a
3
+ size 4938985248
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:378c8d1f8e2da10ba66505da851699dc910e52d8086e146761cef5591ee56f86
3
+ size 4947390768
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73e326499c3378fc67f063c1f3555227a6c572688c05b4f1cc4acfeabb29435a
3
+ size 3590488736
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
3
+ size 15024
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
trainer_state.json ADDED
@@ -0,0 +1,1132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1576,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006345177664974619,
13
+ "grad_norm": 1.6225066184997559,
14
+ "learning_rate": 9.999889621822132e-06,
15
+ "loss": 0.9998,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.012690355329949238,
20
+ "grad_norm": 1.652418613433838,
21
+ "learning_rate": 9.999558492161865e-06,
22
+ "loss": 0.9514,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.01903553299492386,
27
+ "grad_norm": 1.589950680732727,
28
+ "learning_rate": 9.999006625638994e-06,
29
+ "loss": 0.9091,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.025380710659898477,
34
+ "grad_norm": 1.3906126022338867,
35
+ "learning_rate": 9.998234046619128e-06,
36
+ "loss": 0.9221,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.031725888324873094,
41
+ "grad_norm": 1.4328875541687012,
42
+ "learning_rate": 9.997240789212612e-06,
43
+ "loss": 0.9083,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.03807106598984772,
48
+ "grad_norm": 1.682231068611145,
49
+ "learning_rate": 9.996026897273024e-06,
50
+ "loss": 0.884,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.044416243654822336,
55
+ "grad_norm": 1.554661750793457,
56
+ "learning_rate": 9.994592424395235e-06,
57
+ "loss": 0.8974,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.050761421319796954,
62
+ "grad_norm": 1.4692213535308838,
63
+ "learning_rate": 9.992937433913048e-06,
64
+ "loss": 0.9087,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.05710659898477157,
69
+ "grad_norm": 1.7308210134506226,
70
+ "learning_rate": 9.991061998896395e-06,
71
+ "loss": 0.908,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.06345177664974619,
76
+ "grad_norm": 1.3942962884902954,
77
+ "learning_rate": 9.988966202148115e-06,
78
+ "loss": 0.8783,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.06979695431472081,
83
+ "grad_norm": 1.4834920167922974,
84
+ "learning_rate": 9.9866501362003e-06,
85
+ "loss": 0.8663,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.07614213197969544,
90
+ "grad_norm": 1.572066068649292,
91
+ "learning_rate": 9.984113903310206e-06,
92
+ "loss": 0.8876,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.08248730964467005,
97
+ "grad_norm": 1.412290096282959,
98
+ "learning_rate": 9.981357615455738e-06,
99
+ "loss": 0.8744,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.08883248730964467,
104
+ "grad_norm": 1.4933444261550903,
105
+ "learning_rate": 9.978381394330509e-06,
106
+ "loss": 0.8877,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.09517766497461928,
111
+ "grad_norm": 1.44158935546875,
112
+ "learning_rate": 9.975185371338464e-06,
113
+ "loss": 0.8683,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.10152284263959391,
118
+ "grad_norm": 1.4896454811096191,
119
+ "learning_rate": 9.971769687588082e-06,
120
+ "loss": 0.8716,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.10786802030456853,
125
+ "grad_norm": 1.7083044052124023,
126
+ "learning_rate": 9.968134493886143e-06,
127
+ "loss": 0.8689,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.11421319796954314,
132
+ "grad_norm": 1.6805241107940674,
133
+ "learning_rate": 9.964279950731066e-06,
134
+ "loss": 0.8631,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.12055837563451777,
139
+ "grad_norm": 1.469270944595337,
140
+ "learning_rate": 9.960206228305835e-06,
141
+ "loss": 0.8605,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.12690355329949238,
146
+ "grad_norm": 1.587968349456787,
147
+ "learning_rate": 9.955913506470472e-06,
148
+ "loss": 0.8744,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.13324873096446702,
153
+ "grad_norm": 1.3910565376281738,
154
+ "learning_rate": 9.951401974754103e-06,
155
+ "loss": 0.864,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.13959390862944163,
160
+ "grad_norm": 1.3854566812515259,
161
+ "learning_rate": 9.946671832346588e-06,
162
+ "loss": 0.8605,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.14593908629441624,
167
+ "grad_norm": 1.3671081066131592,
168
+ "learning_rate": 9.941723288089727e-06,
169
+ "loss": 0.8492,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.15228426395939088,
174
+ "grad_norm": 1.5190922021865845,
175
+ "learning_rate": 9.936556560468037e-06,
176
+ "loss": 0.8479,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.15862944162436549,
181
+ "grad_norm": 1.4076085090637207,
182
+ "learning_rate": 9.931171877599113e-06,
183
+ "loss": 0.8539,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.1649746192893401,
188
+ "grad_norm": 1.3882677555084229,
189
+ "learning_rate": 9.925569477223549e-06,
190
+ "loss": 0.842,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.1713197969543147,
195
+ "grad_norm": 1.4815824031829834,
196
+ "learning_rate": 9.91974960669444e-06,
197
+ "loss": 0.8368,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.17766497461928935,
202
+ "grad_norm": 1.468481183052063,
203
+ "learning_rate": 9.91371252296647e-06,
204
+ "loss": 0.8573,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.18401015228426396,
209
+ "grad_norm": 1.315491795539856,
210
+ "learning_rate": 9.907458492584561e-06,
211
+ "loss": 0.8546,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.19035532994923857,
216
+ "grad_norm": 1.5127493143081665,
217
+ "learning_rate": 9.9009877916721e-06,
218
+ "loss": 0.865,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.1967005076142132,
223
+ "grad_norm": 1.3773964643478394,
224
+ "learning_rate": 9.89430070591876e-06,
225
+ "loss": 0.8394,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.20304568527918782,
230
+ "grad_norm": 1.3822346925735474,
231
+ "learning_rate": 9.888097563523227e-06,
232
+ "loss": 0.8332,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.20939086294416243,
237
+ "grad_norm": 1.5273101329803467,
238
+ "learning_rate": 9.881000167853215e-06,
239
+ "loss": 0.863,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.21573604060913706,
244
+ "grad_norm": 1.39267897605896,
245
+ "learning_rate": 9.873687269821322e-06,
246
+ "loss": 0.8677,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.22208121827411167,
251
+ "grad_norm": 1.564704418182373,
252
+ "learning_rate": 9.866159192301294e-06,
253
+ "loss": 0.8336,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.22842639593908629,
258
+ "grad_norm": 1.5593595504760742,
259
+ "learning_rate": 9.858416267667318e-06,
260
+ "loss": 0.8476,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.23477157360406092,
265
+ "grad_norm": 1.5241975784301758,
266
+ "learning_rate": 9.850458837779366e-06,
267
+ "loss": 0.8521,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.24111675126903553,
272
+ "grad_norm": 1.4592645168304443,
273
+ "learning_rate": 9.842287253968077e-06,
274
+ "loss": 0.8531,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.24746192893401014,
279
+ "grad_norm": 1.327803373336792,
280
+ "learning_rate": 9.833901877019266e-06,
281
+ "loss": 0.8526,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.25380710659898476,
286
+ "grad_norm": 1.351017713546753,
287
+ "learning_rate": 9.825303077157983e-06,
288
+ "loss": 0.8503,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.26015228426395937,
293
+ "grad_norm": 1.6651396751403809,
294
+ "learning_rate": 9.816491234032175e-06,
295
+ "loss": 0.8758,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.26649746192893403,
300
+ "grad_norm": 1.4911518096923828,
301
+ "learning_rate": 9.807466736695912e-06,
302
+ "loss": 0.8494,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.27284263959390864,
307
+ "grad_norm": 1.34939706325531,
308
+ "learning_rate": 9.798229983592229e-06,
309
+ "loss": 0.8419,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.27918781725888325,
314
+ "grad_norm": 1.4626591205596924,
315
+ "learning_rate": 9.788781382535512e-06,
316
+ "loss": 0.8479,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.28553299492385786,
321
+ "grad_norm": 1.5620290040969849,
322
+ "learning_rate": 9.77912135069351e-06,
323
+ "loss": 0.8442,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.2918781725888325,
328
+ "grad_norm": 1.3260949850082397,
329
+ "learning_rate": 9.769250314568907e-06,
330
+ "loss": 0.818,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.2982233502538071,
335
+ "grad_norm": 1.3637892007827759,
336
+ "learning_rate": 9.7591687099805e-06,
337
+ "loss": 0.8404,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.30456852791878175,
342
+ "grad_norm": 1.5293395519256592,
343
+ "learning_rate": 9.74887698204394e-06,
344
+ "loss": 0.8334,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.31091370558375636,
349
+ "grad_norm": 1.3983063697814941,
350
+ "learning_rate": 9.738375585152103e-06,
351
+ "loss": 0.8225,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.31725888324873097,
356
+ "grad_norm": 1.3531032800674438,
357
+ "learning_rate": 9.727664982955008e-06,
358
+ "loss": 0.8427,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.3236040609137056,
363
+ "grad_norm": 1.5252591371536255,
364
+ "learning_rate": 9.716745648339356e-06,
365
+ "loss": 0.8625,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.3299492385786802,
370
+ "grad_norm": 1.653649926185608,
371
+ "learning_rate": 9.705618063407653e-06,
372
+ "loss": 0.8305,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.3362944162436548,
377
+ "grad_norm": 1.4992367029190063,
378
+ "learning_rate": 9.694282719456916e-06,
379
+ "loss": 0.8149,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.3426395939086294,
384
+ "grad_norm": 1.431707739830017,
385
+ "learning_rate": 9.682740116956992e-06,
386
+ "loss": 0.8355,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.3489847715736041,
391
+ "grad_norm": 1.31185781955719,
392
+ "learning_rate": 9.670990765528453e-06,
393
+ "loss": 0.8408,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.3553299492385787,
398
+ "grad_norm": 1.550418734550476,
399
+ "learning_rate": 9.659035183920098e-06,
400
+ "loss": 0.8227,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.3616751269035533,
405
+ "grad_norm": 1.4619323015213013,
406
+ "learning_rate": 9.646873899986054e-06,
407
+ "loss": 0.866,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.3680203045685279,
412
+ "grad_norm": 1.4029253721237183,
413
+ "learning_rate": 9.634507450662463e-06,
414
+ "loss": 0.8411,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.3743654822335025,
419
+ "grad_norm": 1.401058554649353,
420
+ "learning_rate": 9.621936381943787e-06,
421
+ "loss": 0.848,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.38071065989847713,
426
+ "grad_norm": 1.3282866477966309,
427
+ "learning_rate": 9.609161248858684e-06,
428
+ "loss": 0.8391,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.3870558375634518,
433
+ "grad_norm": 1.4488921165466309,
434
+ "learning_rate": 9.596182615445522e-06,
435
+ "loss": 0.8236,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.3934010152284264,
440
+ "grad_norm": 1.3285187482833862,
441
+ "learning_rate": 9.583001054727463e-06,
442
+ "loss": 0.8439,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.399746192893401,
447
+ "grad_norm": 1.5738445520401,
448
+ "learning_rate": 9.56961714868717e-06,
449
+ "loss": 0.8377,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.40609137055837563,
454
+ "grad_norm": 1.4648795127868652,
455
+ "learning_rate": 9.556031488241107e-06,
456
+ "loss": 0.8337,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.41243654822335024,
461
+ "grad_norm": 1.284525990486145,
462
+ "learning_rate": 9.54224467321345e-06,
463
+ "loss": 0.838,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.41878172588832485,
468
+ "grad_norm": 1.3344087600708008,
469
+ "learning_rate": 9.528257312309608e-06,
470
+ "loss": 0.8242,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.4251269035532995,
475
+ "grad_norm": 1.4964150190353394,
476
+ "learning_rate": 9.514070023089348e-06,
477
+ "loss": 0.8373,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.43147208121827413,
482
+ "grad_norm": 1.324698805809021,
483
+ "learning_rate": 9.49968343193952e-06,
484
+ "loss": 0.8422,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.43781725888324874,
489
+ "grad_norm": 1.2812756299972534,
490
+ "learning_rate": 9.485098174046412e-06,
491
+ "loss": 0.8341,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.44416243654822335,
496
+ "grad_norm": 1.4059038162231445,
497
+ "learning_rate": 9.4703148933677e-06,
498
+ "loss": 0.8187,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.45050761421319796,
503
+ "grad_norm": 1.5261121988296509,
504
+ "learning_rate": 9.455334242604018e-06,
505
+ "loss": 0.8298,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.45685279187817257,
510
+ "grad_norm": 1.420009732246399,
511
+ "learning_rate": 9.440156883170137e-06,
512
+ "loss": 0.8347,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.4631979695431472,
517
+ "grad_norm": 1.2983534336090088,
518
+ "learning_rate": 9.424783485165775e-06,
519
+ "loss": 0.8346,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.46954314720812185,
524
+ "grad_norm": 1.2840627431869507,
525
+ "learning_rate": 9.409214727345987e-06,
526
+ "loss": 0.8151,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.47588832487309646,
531
+ "grad_norm": 1.3696503639221191,
532
+ "learning_rate": 9.39345129709123e-06,
533
+ "loss": 0.8214,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.48223350253807107,
538
+ "grad_norm": 1.370424509048462,
539
+ "learning_rate": 9.37749389037698e-06,
540
+ "loss": 0.8293,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.4885786802030457,
545
+ "grad_norm": 1.4171712398529053,
546
+ "learning_rate": 9.361343211743033e-06,
547
+ "loss": 0.8235,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.4949238578680203,
552
+ "grad_norm": 1.2537575960159302,
553
+ "learning_rate": 9.344999974262377e-06,
554
+ "loss": 0.8188,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.501269035532995,
559
+ "grad_norm": 1.3169902563095093,
560
+ "learning_rate": 9.328464899509722e-06,
561
+ "loss": 0.8169,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.5076142131979695,
566
+ "grad_norm": 1.2017827033996582,
567
+ "learning_rate": 9.31173871752964e-06,
568
+ "loss": 0.8175,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.5139593908629442,
573
+ "grad_norm": 1.5057929754257202,
574
+ "learning_rate": 9.294822166804323e-06,
575
+ "loss": 0.8227,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.5203045685279187,
580
+ "grad_norm": 1.4769108295440674,
581
+ "learning_rate": 9.277715994220989e-06,
582
+ "loss": 0.8137,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.5266497461928934,
587
+ "grad_norm": 1.3442022800445557,
588
+ "learning_rate": 9.260420955038904e-06,
589
+ "loss": 0.8247,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.5329949238578681,
594
+ "grad_norm": 1.2690612077713013,
595
+ "learning_rate": 9.242937812856034e-06,
596
+ "loss": 0.8087,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.5393401015228426,
601
+ "grad_norm": 1.277985692024231,
602
+ "learning_rate": 9.225267339575325e-06,
603
+ "loss": 0.8089,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.5456852791878173,
608
+ "grad_norm": 1.3761783838272095,
609
+ "learning_rate": 9.207410315370639e-06,
610
+ "loss": 0.8248,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.5520304568527918,
615
+ "grad_norm": 1.3367259502410889,
616
+ "learning_rate": 9.18936752865229e-06,
617
+ "loss": 0.8253,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.5583756345177665,
622
+ "grad_norm": 1.293145775794983,
623
+ "learning_rate": 9.17113977603225e-06,
624
+ "loss": 0.8077,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.5647208121827412,
629
+ "grad_norm": 1.290528655052185,
630
+ "learning_rate": 9.152727862288963e-06,
631
+ "loss": 0.8216,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.5710659898477157,
636
+ "grad_norm": 1.298192024230957,
637
+ "learning_rate": 9.134132600331829e-06,
638
+ "loss": 0.824,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.5774111675126904,
643
+ "grad_norm": 1.313166856765747,
644
+ "learning_rate": 9.115354811165298e-06,
645
+ "loss": 0.8197,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.583756345177665,
650
+ "grad_norm": 1.2986682653427124,
651
+ "learning_rate": 9.096395323852635e-06,
652
+ "loss": 0.8172,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.5901015228426396,
657
+ "grad_norm": 1.3514500856399536,
658
+ "learning_rate": 9.0772549754793e-06,
659
+ "loss": 0.835,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.5964467005076142,
664
+ "grad_norm": 1.1752053499221802,
665
+ "learning_rate": 9.057934611116008e-06,
666
+ "loss": 0.8113,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.6027918781725888,
671
+ "grad_norm": 1.230542540550232,
672
+ "learning_rate": 9.038435083781401e-06,
673
+ "loss": 0.8115,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.6091370558375635,
678
+ "grad_norm": 1.247090458869934,
679
+ "learning_rate": 9.0187572544044e-06,
680
+ "loss": 0.8202,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.6154822335025381,
685
+ "grad_norm": 1.3615097999572754,
686
+ "learning_rate": 8.998901991786186e-06,
687
+ "loss": 0.8369,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.6218274111675127,
692
+ "grad_norm": 1.3490197658538818,
693
+ "learning_rate": 8.978870172561842e-06,
694
+ "loss": 0.8084,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.6281725888324873,
699
+ "grad_norm": 1.2877025604248047,
700
+ "learning_rate": 8.95866268116165e-06,
701
+ "loss": 0.7929,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.6345177664974619,
706
+ "grad_norm": 1.5650062561035156,
707
+ "learning_rate": 8.938280409772038e-06,
708
+ "loss": 0.8263,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.6408629441624365,
713
+ "grad_norm": 1.2181209325790405,
714
+ "learning_rate": 8.917724258296204e-06,
715
+ "loss": 0.8137,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.6472081218274112,
720
+ "grad_norm": 1.4872324466705322,
721
+ "learning_rate": 8.896995134314361e-06,
722
+ "loss": 0.8097,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.6535532994923858,
727
+ "grad_norm": 1.3156676292419434,
728
+ "learning_rate": 8.876093953043683e-06,
729
+ "loss": 0.8149,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.6598984771573604,
734
+ "grad_norm": 1.358504295349121,
735
+ "learning_rate": 8.855021637297893e-06,
736
+ "loss": 0.8128,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.666243654822335,
741
+ "grad_norm": 1.4342836141586304,
742
+ "learning_rate": 8.833779117446515e-06,
743
+ "loss": 0.8101,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.6725888324873096,
748
+ "grad_norm": 1.2380530834197998,
749
+ "learning_rate": 8.812367331373806e-06,
750
+ "loss": 0.8046,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.6789340101522843,
755
+ "grad_norm": 1.253306269645691,
756
+ "learning_rate": 8.790787224437334e-06,
757
+ "loss": 0.8255,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.6852791878172588,
762
+ "grad_norm": 1.514151692390442,
763
+ "learning_rate": 8.769039749426256e-06,
764
+ "loss": 0.7946,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.6916243654822335,
769
+ "grad_norm": 1.4850667715072632,
770
+ "learning_rate": 8.747125866519236e-06,
771
+ "loss": 0.8006,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.6979695431472082,
776
+ "grad_norm": 1.4190680980682373,
777
+ "learning_rate": 8.725046543242061e-06,
778
+ "loss": 0.8243,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.7043147208121827,
783
+ "grad_norm": 1.4006381034851074,
784
+ "learning_rate": 8.70280275442492e-06,
785
+ "loss": 0.829,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.7106598984771574,
790
+ "grad_norm": 1.2715387344360352,
791
+ "learning_rate": 8.680395482159364e-06,
792
+ "loss": 0.806,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.7170050761421319,
797
+ "grad_norm": 1.4159283638000488,
798
+ "learning_rate": 8.657825715754947e-06,
799
+ "loss": 0.8173,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.7233502538071066,
804
+ "grad_norm": 1.368446946144104,
805
+ "learning_rate": 8.63509445169554e-06,
806
+ "loss": 0.8042,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.7296954314720813,
811
+ "grad_norm": 1.3700900077819824,
812
+ "learning_rate": 8.612202693595356e-06,
813
+ "loss": 0.8016,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.7360406091370558,
818
+ "grad_norm": 1.4008903503417969,
819
+ "learning_rate": 8.589151452154605e-06,
820
+ "loss": 0.8295,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.7423857868020305,
825
+ "grad_norm": 1.2189836502075195,
826
+ "learning_rate": 8.565941745114901e-06,
827
+ "loss": 0.8234,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.748730964467005,
832
+ "grad_norm": 1.2055974006652832,
833
+ "learning_rate": 8.542574597214314e-06,
834
+ "loss": 0.8034,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.7550761421319797,
839
+ "grad_norm": 1.2510757446289062,
840
+ "learning_rate": 8.519051040142128e-06,
841
+ "loss": 0.815,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.7614213197969543,
846
+ "grad_norm": 1.3542871475219727,
847
+ "learning_rate": 8.495372112493285e-06,
848
+ "loss": 0.8099,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.7677664974619289,
853
+ "grad_norm": 1.3265260457992554,
854
+ "learning_rate": 8.471538859722545e-06,
855
+ "loss": 0.7971,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.7741116751269036,
860
+ "grad_norm": 1.2787420749664307,
861
+ "learning_rate": 8.447552334098311e-06,
862
+ "loss": 0.8031,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.7804568527918782,
867
+ "grad_norm": 1.2956528663635254,
868
+ "learning_rate": 8.42341359465618e-06,
869
+ "loss": 0.8252,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.7868020304568528,
874
+ "grad_norm": 1.6075105667114258,
875
+ "learning_rate": 8.399123707152182e-06,
876
+ "loss": 0.7794,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.7931472081218274,
881
+ "grad_norm": 1.4134018421173096,
882
+ "learning_rate": 8.374683744015728e-06,
883
+ "loss": 0.8111,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.799492385786802,
888
+ "grad_norm": 1.3463298082351685,
889
+ "learning_rate": 8.350094784302253e-06,
890
+ "loss": 0.818,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.8058375634517766,
895
+ "grad_norm": 1.330447793006897,
896
+ "learning_rate": 8.325357913645589e-06,
897
+ "loss": 0.7955,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.8121827411167513,
902
+ "grad_norm": 1.2311888933181763,
903
+ "learning_rate": 8.300474224210018e-06,
904
+ "loss": 0.8042,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.8185279187817259,
909
+ "grad_norm": 1.2119029760360718,
910
+ "learning_rate": 8.27544481464206e-06,
911
+ "loss": 0.7754,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.8248730964467005,
916
+ "grad_norm": 1.3066750764846802,
917
+ "learning_rate": 8.25027079002196e-06,
918
+ "loss": 0.7988,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.8312182741116751,
923
+ "grad_norm": 1.4108072519302368,
924
+ "learning_rate": 8.224953261814912e-06,
925
+ "loss": 0.7966,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.8375634517766497,
930
+ "grad_norm": 1.206554651260376,
931
+ "learning_rate": 8.199493347821963e-06,
932
+ "loss": 0.7973,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.8439086294416244,
937
+ "grad_norm": 1.3971256017684937,
938
+ "learning_rate": 8.173892172130683e-06,
939
+ "loss": 0.7923,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.850253807106599,
944
+ "grad_norm": 1.3277279138565063,
945
+ "learning_rate": 8.148150865065514e-06,
946
+ "loss": 0.7894,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.8565989847715736,
951
+ "grad_norm": 1.0922918319702148,
952
+ "learning_rate": 8.122270563137893e-06,
953
+ "loss": 0.8043,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.8629441624365483,
958
+ "grad_norm": 1.3102174997329712,
959
+ "learning_rate": 8.096252408996043e-06,
960
+ "loss": 0.7988,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.8692893401015228,
965
+ "grad_norm": 1.36167311668396,
966
+ "learning_rate": 8.070097551374543e-06,
967
+ "loss": 0.8137,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.8756345177664975,
972
+ "grad_norm": 1.3062223196029663,
973
+ "learning_rate": 8.043807145043604e-06,
974
+ "loss": 0.8001,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.881979695431472,
979
+ "grad_norm": 1.3194143772125244,
980
+ "learning_rate": 8.017382350758085e-06,
981
+ "loss": 0.8137,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.8883248730964467,
986
+ "grad_norm": 1.1782550811767578,
987
+ "learning_rate": 7.990824335206242e-06,
988
+ "loss": 0.7823,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.8946700507614214,
993
+ "grad_norm": 1.4341142177581787,
994
+ "learning_rate": 7.964134270958222e-06,
995
+ "loss": 0.8075,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.9010152284263959,
1000
+ "grad_norm": 1.3810592889785767,
1001
+ "learning_rate": 7.937313336414287e-06,
1002
+ "loss": 0.8346,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.9073604060913706,
1007
+ "grad_norm": 1.2569160461425781,
1008
+ "learning_rate": 7.910362715752792e-06,
1009
+ "loss": 0.7885,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.9137055837563451,
1014
+ "grad_norm": 1.2901798486709595,
1015
+ "learning_rate": 7.8832835988779e-06,
1016
+ "loss": 0.7846,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.9200507614213198,
1021
+ "grad_norm": 1.369370460510254,
1022
+ "learning_rate": 7.856077181367036e-06,
1023
+ "loss": 0.796,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.9263959390862944,
1028
+ "grad_norm": 1.3031636476516724,
1029
+ "learning_rate": 7.828744664418121e-06,
1030
+ "loss": 0.82,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.932741116751269,
1035
+ "grad_norm": 1.371850609779358,
1036
+ "learning_rate": 7.801287254796522e-06,
1037
+ "loss": 0.7746,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.9390862944162437,
1042
+ "grad_norm": 1.2887086868286133,
1043
+ "learning_rate": 7.773706164781776e-06,
1044
+ "loss": 0.7718,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.9454314720812182,
1049
+ "grad_norm": 1.215701699256897,
1050
+ "learning_rate": 7.746002612114064e-06,
1051
+ "loss": 0.7974,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.9517766497461929,
1056
+ "grad_norm": 1.3907893896102905,
1057
+ "learning_rate": 7.718177819940455e-06,
1058
+ "loss": 0.7891,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.9581218274111675,
1063
+ "grad_norm": 1.279998779296875,
1064
+ "learning_rate": 7.690233016760891e-06,
1065
+ "loss": 0.8199,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.9644670050761421,
1070
+ "grad_norm": 1.2313257455825806,
1071
+ "learning_rate": 7.662169436373954e-06,
1072
+ "loss": 0.7825,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.9708121827411168,
1077
+ "grad_norm": 1.3036500215530396,
1078
+ "learning_rate": 7.633988317822394e-06,
1079
+ "loss": 0.7927,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.9771573604060914,
1084
+ "grad_norm": 1.4679865837097168,
1085
+ "learning_rate": 7.605690905338413e-06,
1086
+ "loss": 0.8148,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.983502538071066,
1091
+ "grad_norm": 1.1727280616760254,
1092
+ "learning_rate": 7.577278448288745e-06,
1093
+ "loss": 0.8088,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.9898477157360406,
1098
+ "grad_norm": 1.4299554824829102,
1099
+ "learning_rate": 7.548752201119484e-06,
1100
+ "loss": 0.8154,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.9961928934010152,
1105
+ "grad_norm": 1.2478923797607422,
1106
+ "learning_rate": 7.520113423300706e-06,
1107
+ "loss": 0.7988,
1108
+ "step": 1570
1109
+ }
1110
+ ],
1111
+ "logging_steps": 10,
1112
+ "max_steps": 4728,
1113
+ "num_input_tokens_seen": 0,
1114
+ "num_train_epochs": 3,
1115
+ "save_steps": 50.0,
1116
+ "stateful_callbacks": {
1117
+ "TrainerControl": {
1118
+ "args": {
1119
+ "should_epoch_stop": false,
1120
+ "should_evaluate": false,
1121
+ "should_log": false,
1122
+ "should_save": true,
1123
+ "should_training_stop": false
1124
+ },
1125
+ "attributes": {}
1126
+ }
1127
+ },
1128
+ "total_flos": 3.066955944001798e+18,
1129
+ "train_batch_size": 16,
1130
+ "trial_name": null,
1131
+ "trial_params": null
1132
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38910cc27a81dfe34946ec142e2ee6616bc16de0ca61d655dc667d70b3b810d8
3
+ size 6904
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)