Upload folder using huggingface_hub
Browse files- config.json +29 -0
- generation_config.json +10 -0
- latest +1 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +45 -0
- trainer_state.json +1132 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/share/home/dwu/local_models/Llama-2-7b-chat-hf",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 4096,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 11008,
|
| 14 |
+
"max_position_embeddings": 4096,
|
| 15 |
+
"mlp_bias": false,
|
| 16 |
+
"model_type": "llama",
|
| 17 |
+
"num_attention_heads": 32,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"num_key_value_heads": 32,
|
| 20 |
+
"pretraining_tp": 1,
|
| 21 |
+
"rms_norm_eps": 1e-05,
|
| 22 |
+
"rope_scaling": null,
|
| 23 |
+
"rope_theta": 10000.0,
|
| 24 |
+
"tie_word_embeddings": false,
|
| 25 |
+
"torch_dtype": "float16",
|
| 26 |
+
"transformers_version": "4.44.2",
|
| 27 |
+
"use_cache": false,
|
| 28 |
+
"vocab_size": 32000
|
| 29 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"temperature": 0.6,
|
| 8 |
+
"top_p": 0.9,
|
| 9 |
+
"transformers_version": "4.44.2"
|
| 10 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1576
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3158a908c9897aeed7d5b4ed61642421a29d4d23d1edec7b27029af252367f1a
|
| 3 |
+
size 4938985248
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:378c8d1f8e2da10ba66505da851699dc910e52d8086e146761cef5591ee56f86
|
| 3 |
+
size 4947390768
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73e326499c3378fc67f063c1f3555227a6c572688c05b4f1cc4acfeabb29435a
|
| 3 |
+
size 3590488736
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 13476831232
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
|
| 3 |
+
size 15024
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
|
| 3 |
+
size 15024
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
|
| 3 |
+
size 15024
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
|
| 3 |
+
size 15024
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
| 33 |
+
"clean_up_tokenization_spaces": false,
|
| 34 |
+
"eos_token": "</s>",
|
| 35 |
+
"legacy": false,
|
| 36 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 37 |
+
"pad_token": "</s>",
|
| 38 |
+
"padding_side": "right",
|
| 39 |
+
"sp_model_kwargs": {},
|
| 40 |
+
"spaces_between_special_tokens": false,
|
| 41 |
+
"split_special_tokens": false,
|
| 42 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 43 |
+
"unk_token": "<unk>",
|
| 44 |
+
"use_default_system_prompt": false
|
| 45 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 1576,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.006345177664974619,
|
| 13 |
+
"grad_norm": 1.6225066184997559,
|
| 14 |
+
"learning_rate": 9.999889621822132e-06,
|
| 15 |
+
"loss": 0.9998,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.012690355329949238,
|
| 20 |
+
"grad_norm": 1.652418613433838,
|
| 21 |
+
"learning_rate": 9.999558492161865e-06,
|
| 22 |
+
"loss": 0.9514,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.01903553299492386,
|
| 27 |
+
"grad_norm": 1.589950680732727,
|
| 28 |
+
"learning_rate": 9.999006625638994e-06,
|
| 29 |
+
"loss": 0.9091,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.025380710659898477,
|
| 34 |
+
"grad_norm": 1.3906126022338867,
|
| 35 |
+
"learning_rate": 9.998234046619128e-06,
|
| 36 |
+
"loss": 0.9221,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.031725888324873094,
|
| 41 |
+
"grad_norm": 1.4328875541687012,
|
| 42 |
+
"learning_rate": 9.997240789212612e-06,
|
| 43 |
+
"loss": 0.9083,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.03807106598984772,
|
| 48 |
+
"grad_norm": 1.682231068611145,
|
| 49 |
+
"learning_rate": 9.996026897273024e-06,
|
| 50 |
+
"loss": 0.884,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.044416243654822336,
|
| 55 |
+
"grad_norm": 1.554661750793457,
|
| 56 |
+
"learning_rate": 9.994592424395235e-06,
|
| 57 |
+
"loss": 0.8974,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.050761421319796954,
|
| 62 |
+
"grad_norm": 1.4692213535308838,
|
| 63 |
+
"learning_rate": 9.992937433913048e-06,
|
| 64 |
+
"loss": 0.9087,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.05710659898477157,
|
| 69 |
+
"grad_norm": 1.7308210134506226,
|
| 70 |
+
"learning_rate": 9.991061998896395e-06,
|
| 71 |
+
"loss": 0.908,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.06345177664974619,
|
| 76 |
+
"grad_norm": 1.3942962884902954,
|
| 77 |
+
"learning_rate": 9.988966202148115e-06,
|
| 78 |
+
"loss": 0.8783,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.06979695431472081,
|
| 83 |
+
"grad_norm": 1.4834920167922974,
|
| 84 |
+
"learning_rate": 9.9866501362003e-06,
|
| 85 |
+
"loss": 0.8663,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.07614213197969544,
|
| 90 |
+
"grad_norm": 1.572066068649292,
|
| 91 |
+
"learning_rate": 9.984113903310206e-06,
|
| 92 |
+
"loss": 0.8876,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.08248730964467005,
|
| 97 |
+
"grad_norm": 1.412290096282959,
|
| 98 |
+
"learning_rate": 9.981357615455738e-06,
|
| 99 |
+
"loss": 0.8744,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.08883248730964467,
|
| 104 |
+
"grad_norm": 1.4933444261550903,
|
| 105 |
+
"learning_rate": 9.978381394330509e-06,
|
| 106 |
+
"loss": 0.8877,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.09517766497461928,
|
| 111 |
+
"grad_norm": 1.44158935546875,
|
| 112 |
+
"learning_rate": 9.975185371338464e-06,
|
| 113 |
+
"loss": 0.8683,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.10152284263959391,
|
| 118 |
+
"grad_norm": 1.4896454811096191,
|
| 119 |
+
"learning_rate": 9.971769687588082e-06,
|
| 120 |
+
"loss": 0.8716,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.10786802030456853,
|
| 125 |
+
"grad_norm": 1.7083044052124023,
|
| 126 |
+
"learning_rate": 9.968134493886143e-06,
|
| 127 |
+
"loss": 0.8689,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.11421319796954314,
|
| 132 |
+
"grad_norm": 1.6805241107940674,
|
| 133 |
+
"learning_rate": 9.964279950731066e-06,
|
| 134 |
+
"loss": 0.8631,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.12055837563451777,
|
| 139 |
+
"grad_norm": 1.469270944595337,
|
| 140 |
+
"learning_rate": 9.960206228305835e-06,
|
| 141 |
+
"loss": 0.8605,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.12690355329949238,
|
| 146 |
+
"grad_norm": 1.587968349456787,
|
| 147 |
+
"learning_rate": 9.955913506470472e-06,
|
| 148 |
+
"loss": 0.8744,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.13324873096446702,
|
| 153 |
+
"grad_norm": 1.3910565376281738,
|
| 154 |
+
"learning_rate": 9.951401974754103e-06,
|
| 155 |
+
"loss": 0.864,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.13959390862944163,
|
| 160 |
+
"grad_norm": 1.3854566812515259,
|
| 161 |
+
"learning_rate": 9.946671832346588e-06,
|
| 162 |
+
"loss": 0.8605,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.14593908629441624,
|
| 167 |
+
"grad_norm": 1.3671081066131592,
|
| 168 |
+
"learning_rate": 9.941723288089727e-06,
|
| 169 |
+
"loss": 0.8492,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.15228426395939088,
|
| 174 |
+
"grad_norm": 1.5190922021865845,
|
| 175 |
+
"learning_rate": 9.936556560468037e-06,
|
| 176 |
+
"loss": 0.8479,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.15862944162436549,
|
| 181 |
+
"grad_norm": 1.4076085090637207,
|
| 182 |
+
"learning_rate": 9.931171877599113e-06,
|
| 183 |
+
"loss": 0.8539,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.1649746192893401,
|
| 188 |
+
"grad_norm": 1.3882677555084229,
|
| 189 |
+
"learning_rate": 9.925569477223549e-06,
|
| 190 |
+
"loss": 0.842,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.1713197969543147,
|
| 195 |
+
"grad_norm": 1.4815824031829834,
|
| 196 |
+
"learning_rate": 9.91974960669444e-06,
|
| 197 |
+
"loss": 0.8368,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.17766497461928935,
|
| 202 |
+
"grad_norm": 1.468481183052063,
|
| 203 |
+
"learning_rate": 9.91371252296647e-06,
|
| 204 |
+
"loss": 0.8573,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.18401015228426396,
|
| 209 |
+
"grad_norm": 1.315491795539856,
|
| 210 |
+
"learning_rate": 9.907458492584561e-06,
|
| 211 |
+
"loss": 0.8546,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.19035532994923857,
|
| 216 |
+
"grad_norm": 1.5127493143081665,
|
| 217 |
+
"learning_rate": 9.9009877916721e-06,
|
| 218 |
+
"loss": 0.865,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.1967005076142132,
|
| 223 |
+
"grad_norm": 1.3773964643478394,
|
| 224 |
+
"learning_rate": 9.89430070591876e-06,
|
| 225 |
+
"loss": 0.8394,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.20304568527918782,
|
| 230 |
+
"grad_norm": 1.3822346925735474,
|
| 231 |
+
"learning_rate": 9.888097563523227e-06,
|
| 232 |
+
"loss": 0.8332,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.20939086294416243,
|
| 237 |
+
"grad_norm": 1.5273101329803467,
|
| 238 |
+
"learning_rate": 9.881000167853215e-06,
|
| 239 |
+
"loss": 0.863,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.21573604060913706,
|
| 244 |
+
"grad_norm": 1.39267897605896,
|
| 245 |
+
"learning_rate": 9.873687269821322e-06,
|
| 246 |
+
"loss": 0.8677,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.22208121827411167,
|
| 251 |
+
"grad_norm": 1.564704418182373,
|
| 252 |
+
"learning_rate": 9.866159192301294e-06,
|
| 253 |
+
"loss": 0.8336,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.22842639593908629,
|
| 258 |
+
"grad_norm": 1.5593595504760742,
|
| 259 |
+
"learning_rate": 9.858416267667318e-06,
|
| 260 |
+
"loss": 0.8476,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.23477157360406092,
|
| 265 |
+
"grad_norm": 1.5241975784301758,
|
| 266 |
+
"learning_rate": 9.850458837779366e-06,
|
| 267 |
+
"loss": 0.8521,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.24111675126903553,
|
| 272 |
+
"grad_norm": 1.4592645168304443,
|
| 273 |
+
"learning_rate": 9.842287253968077e-06,
|
| 274 |
+
"loss": 0.8531,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.24746192893401014,
|
| 279 |
+
"grad_norm": 1.327803373336792,
|
| 280 |
+
"learning_rate": 9.833901877019266e-06,
|
| 281 |
+
"loss": 0.8526,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.25380710659898476,
|
| 286 |
+
"grad_norm": 1.351017713546753,
|
| 287 |
+
"learning_rate": 9.825303077157983e-06,
|
| 288 |
+
"loss": 0.8503,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.26015228426395937,
|
| 293 |
+
"grad_norm": 1.6651396751403809,
|
| 294 |
+
"learning_rate": 9.816491234032175e-06,
|
| 295 |
+
"loss": 0.8758,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.26649746192893403,
|
| 300 |
+
"grad_norm": 1.4911518096923828,
|
| 301 |
+
"learning_rate": 9.807466736695912e-06,
|
| 302 |
+
"loss": 0.8494,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.27284263959390864,
|
| 307 |
+
"grad_norm": 1.34939706325531,
|
| 308 |
+
"learning_rate": 9.798229983592229e-06,
|
| 309 |
+
"loss": 0.8419,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.27918781725888325,
|
| 314 |
+
"grad_norm": 1.4626591205596924,
|
| 315 |
+
"learning_rate": 9.788781382535512e-06,
|
| 316 |
+
"loss": 0.8479,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.28553299492385786,
|
| 321 |
+
"grad_norm": 1.5620290040969849,
|
| 322 |
+
"learning_rate": 9.77912135069351e-06,
|
| 323 |
+
"loss": 0.8442,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.2918781725888325,
|
| 328 |
+
"grad_norm": 1.3260949850082397,
|
| 329 |
+
"learning_rate": 9.769250314568907e-06,
|
| 330 |
+
"loss": 0.818,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.2982233502538071,
|
| 335 |
+
"grad_norm": 1.3637892007827759,
|
| 336 |
+
"learning_rate": 9.7591687099805e-06,
|
| 337 |
+
"loss": 0.8404,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.30456852791878175,
|
| 342 |
+
"grad_norm": 1.5293395519256592,
|
| 343 |
+
"learning_rate": 9.74887698204394e-06,
|
| 344 |
+
"loss": 0.8334,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.31091370558375636,
|
| 349 |
+
"grad_norm": 1.3983063697814941,
|
| 350 |
+
"learning_rate": 9.738375585152103e-06,
|
| 351 |
+
"loss": 0.8225,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.31725888324873097,
|
| 356 |
+
"grad_norm": 1.3531032800674438,
|
| 357 |
+
"learning_rate": 9.727664982955008e-06,
|
| 358 |
+
"loss": 0.8427,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.3236040609137056,
|
| 363 |
+
"grad_norm": 1.5252591371536255,
|
| 364 |
+
"learning_rate": 9.716745648339356e-06,
|
| 365 |
+
"loss": 0.8625,
|
| 366 |
+
"step": 510
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.3299492385786802,
|
| 370 |
+
"grad_norm": 1.653649926185608,
|
| 371 |
+
"learning_rate": 9.705618063407653e-06,
|
| 372 |
+
"loss": 0.8305,
|
| 373 |
+
"step": 520
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.3362944162436548,
|
| 377 |
+
"grad_norm": 1.4992367029190063,
|
| 378 |
+
"learning_rate": 9.694282719456916e-06,
|
| 379 |
+
"loss": 0.8149,
|
| 380 |
+
"step": 530
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.3426395939086294,
|
| 384 |
+
"grad_norm": 1.431707739830017,
|
| 385 |
+
"learning_rate": 9.682740116956992e-06,
|
| 386 |
+
"loss": 0.8355,
|
| 387 |
+
"step": 540
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.3489847715736041,
|
| 391 |
+
"grad_norm": 1.31185781955719,
|
| 392 |
+
"learning_rate": 9.670990765528453e-06,
|
| 393 |
+
"loss": 0.8408,
|
| 394 |
+
"step": 550
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.3553299492385787,
|
| 398 |
+
"grad_norm": 1.550418734550476,
|
| 399 |
+
"learning_rate": 9.659035183920098e-06,
|
| 400 |
+
"loss": 0.8227,
|
| 401 |
+
"step": 560
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.3616751269035533,
|
| 405 |
+
"grad_norm": 1.4619323015213013,
|
| 406 |
+
"learning_rate": 9.646873899986054e-06,
|
| 407 |
+
"loss": 0.866,
|
| 408 |
+
"step": 570
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.3680203045685279,
|
| 412 |
+
"grad_norm": 1.4029253721237183,
|
| 413 |
+
"learning_rate": 9.634507450662463e-06,
|
| 414 |
+
"loss": 0.8411,
|
| 415 |
+
"step": 580
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.3743654822335025,
|
| 419 |
+
"grad_norm": 1.401058554649353,
|
| 420 |
+
"learning_rate": 9.621936381943787e-06,
|
| 421 |
+
"loss": 0.848,
|
| 422 |
+
"step": 590
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.38071065989847713,
|
| 426 |
+
"grad_norm": 1.3282866477966309,
|
| 427 |
+
"learning_rate": 9.609161248858684e-06,
|
| 428 |
+
"loss": 0.8391,
|
| 429 |
+
"step": 600
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.3870558375634518,
|
| 433 |
+
"grad_norm": 1.4488921165466309,
|
| 434 |
+
"learning_rate": 9.596182615445522e-06,
|
| 435 |
+
"loss": 0.8236,
|
| 436 |
+
"step": 610
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.3934010152284264,
|
| 440 |
+
"grad_norm": 1.3285187482833862,
|
| 441 |
+
"learning_rate": 9.583001054727463e-06,
|
| 442 |
+
"loss": 0.8439,
|
| 443 |
+
"step": 620
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.399746192893401,
|
| 447 |
+
"grad_norm": 1.5738445520401,
|
| 448 |
+
"learning_rate": 9.56961714868717e-06,
|
| 449 |
+
"loss": 0.8377,
|
| 450 |
+
"step": 630
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.40609137055837563,
|
| 454 |
+
"grad_norm": 1.4648795127868652,
|
| 455 |
+
"learning_rate": 9.556031488241107e-06,
|
| 456 |
+
"loss": 0.8337,
|
| 457 |
+
"step": 640
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.41243654822335024,
|
| 461 |
+
"grad_norm": 1.284525990486145,
|
| 462 |
+
"learning_rate": 9.54224467321345e-06,
|
| 463 |
+
"loss": 0.838,
|
| 464 |
+
"step": 650
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.41878172588832485,
|
| 468 |
+
"grad_norm": 1.3344087600708008,
|
| 469 |
+
"learning_rate": 9.528257312309608e-06,
|
| 470 |
+
"loss": 0.8242,
|
| 471 |
+
"step": 660
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.4251269035532995,
|
| 475 |
+
"grad_norm": 1.4964150190353394,
|
| 476 |
+
"learning_rate": 9.514070023089348e-06,
|
| 477 |
+
"loss": 0.8373,
|
| 478 |
+
"step": 670
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.43147208121827413,
|
| 482 |
+
"grad_norm": 1.324698805809021,
|
| 483 |
+
"learning_rate": 9.49968343193952e-06,
|
| 484 |
+
"loss": 0.8422,
|
| 485 |
+
"step": 680
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.43781725888324874,
|
| 489 |
+
"grad_norm": 1.2812756299972534,
|
| 490 |
+
"learning_rate": 9.485098174046412e-06,
|
| 491 |
+
"loss": 0.8341,
|
| 492 |
+
"step": 690
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.44416243654822335,
|
| 496 |
+
"grad_norm": 1.4059038162231445,
|
| 497 |
+
"learning_rate": 9.4703148933677e-06,
|
| 498 |
+
"loss": 0.8187,
|
| 499 |
+
"step": 700
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.45050761421319796,
|
| 503 |
+
"grad_norm": 1.5261121988296509,
|
| 504 |
+
"learning_rate": 9.455334242604018e-06,
|
| 505 |
+
"loss": 0.8298,
|
| 506 |
+
"step": 710
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.45685279187817257,
|
| 510 |
+
"grad_norm": 1.420009732246399,
|
| 511 |
+
"learning_rate": 9.440156883170137e-06,
|
| 512 |
+
"loss": 0.8347,
|
| 513 |
+
"step": 720
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.4631979695431472,
|
| 517 |
+
"grad_norm": 1.2983534336090088,
|
| 518 |
+
"learning_rate": 9.424783485165775e-06,
|
| 519 |
+
"loss": 0.8346,
|
| 520 |
+
"step": 730
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.46954314720812185,
|
| 524 |
+
"grad_norm": 1.2840627431869507,
|
| 525 |
+
"learning_rate": 9.409214727345987e-06,
|
| 526 |
+
"loss": 0.8151,
|
| 527 |
+
"step": 740
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.47588832487309646,
|
| 531 |
+
"grad_norm": 1.3696503639221191,
|
| 532 |
+
"learning_rate": 9.39345129709123e-06,
|
| 533 |
+
"loss": 0.8214,
|
| 534 |
+
"step": 750
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.48223350253807107,
|
| 538 |
+
"grad_norm": 1.370424509048462,
|
| 539 |
+
"learning_rate": 9.37749389037698e-06,
|
| 540 |
+
"loss": 0.8293,
|
| 541 |
+
"step": 760
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.4885786802030457,
|
| 545 |
+
"grad_norm": 1.4171712398529053,
|
| 546 |
+
"learning_rate": 9.361343211743033e-06,
|
| 547 |
+
"loss": 0.8235,
|
| 548 |
+
"step": 770
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.4949238578680203,
|
| 552 |
+
"grad_norm": 1.2537575960159302,
|
| 553 |
+
"learning_rate": 9.344999974262377e-06,
|
| 554 |
+
"loss": 0.8188,
|
| 555 |
+
"step": 780
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.501269035532995,
|
| 559 |
+
"grad_norm": 1.3169902563095093,
|
| 560 |
+
"learning_rate": 9.328464899509722e-06,
|
| 561 |
+
"loss": 0.8169,
|
| 562 |
+
"step": 790
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.5076142131979695,
|
| 566 |
+
"grad_norm": 1.2017827033996582,
|
| 567 |
+
"learning_rate": 9.31173871752964e-06,
|
| 568 |
+
"loss": 0.8175,
|
| 569 |
+
"step": 800
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.5139593908629442,
|
| 573 |
+
"grad_norm": 1.5057929754257202,
|
| 574 |
+
"learning_rate": 9.294822166804323e-06,
|
| 575 |
+
"loss": 0.8227,
|
| 576 |
+
"step": 810
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.5203045685279187,
|
| 580 |
+
"grad_norm": 1.4769108295440674,
|
| 581 |
+
"learning_rate": 9.277715994220989e-06,
|
| 582 |
+
"loss": 0.8137,
|
| 583 |
+
"step": 820
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.5266497461928934,
|
| 587 |
+
"grad_norm": 1.3442022800445557,
|
| 588 |
+
"learning_rate": 9.260420955038904e-06,
|
| 589 |
+
"loss": 0.8247,
|
| 590 |
+
"step": 830
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.5329949238578681,
|
| 594 |
+
"grad_norm": 1.2690612077713013,
|
| 595 |
+
"learning_rate": 9.242937812856034e-06,
|
| 596 |
+
"loss": 0.8087,
|
| 597 |
+
"step": 840
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.5393401015228426,
|
| 601 |
+
"grad_norm": 1.277985692024231,
|
| 602 |
+
"learning_rate": 9.225267339575325e-06,
|
| 603 |
+
"loss": 0.8089,
|
| 604 |
+
"step": 850
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.5456852791878173,
|
| 608 |
+
"grad_norm": 1.3761783838272095,
|
| 609 |
+
"learning_rate": 9.207410315370639e-06,
|
| 610 |
+
"loss": 0.8248,
|
| 611 |
+
"step": 860
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.5520304568527918,
|
| 615 |
+
"grad_norm": 1.3367259502410889,
|
| 616 |
+
"learning_rate": 9.18936752865229e-06,
|
| 617 |
+
"loss": 0.8253,
|
| 618 |
+
"step": 870
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.5583756345177665,
|
| 622 |
+
"grad_norm": 1.293145775794983,
|
| 623 |
+
"learning_rate": 9.17113977603225e-06,
|
| 624 |
+
"loss": 0.8077,
|
| 625 |
+
"step": 880
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.5647208121827412,
|
| 629 |
+
"grad_norm": 1.290528655052185,
|
| 630 |
+
"learning_rate": 9.152727862288963e-06,
|
| 631 |
+
"loss": 0.8216,
|
| 632 |
+
"step": 890
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.5710659898477157,
|
| 636 |
+
"grad_norm": 1.298192024230957,
|
| 637 |
+
"learning_rate": 9.134132600331829e-06,
|
| 638 |
+
"loss": 0.824,
|
| 639 |
+
"step": 900
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.5774111675126904,
|
| 643 |
+
"grad_norm": 1.313166856765747,
|
| 644 |
+
"learning_rate": 9.115354811165298e-06,
|
| 645 |
+
"loss": 0.8197,
|
| 646 |
+
"step": 910
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.583756345177665,
|
| 650 |
+
"grad_norm": 1.2986682653427124,
|
| 651 |
+
"learning_rate": 9.096395323852635e-06,
|
| 652 |
+
"loss": 0.8172,
|
| 653 |
+
"step": 920
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.5901015228426396,
|
| 657 |
+
"grad_norm": 1.3514500856399536,
|
| 658 |
+
"learning_rate": 9.0772549754793e-06,
|
| 659 |
+
"loss": 0.835,
|
| 660 |
+
"step": 930
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.5964467005076142,
|
| 664 |
+
"grad_norm": 1.1752053499221802,
|
| 665 |
+
"learning_rate": 9.057934611116008e-06,
|
| 666 |
+
"loss": 0.8113,
|
| 667 |
+
"step": 940
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.6027918781725888,
|
| 671 |
+
"grad_norm": 1.230542540550232,
|
| 672 |
+
"learning_rate": 9.038435083781401e-06,
|
| 673 |
+
"loss": 0.8115,
|
| 674 |
+
"step": 950
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.6091370558375635,
|
| 678 |
+
"grad_norm": 1.247090458869934,
|
| 679 |
+
"learning_rate": 9.0187572544044e-06,
|
| 680 |
+
"loss": 0.8202,
|
| 681 |
+
"step": 960
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.6154822335025381,
|
| 685 |
+
"grad_norm": 1.3615097999572754,
|
| 686 |
+
"learning_rate": 8.998901991786186e-06,
|
| 687 |
+
"loss": 0.8369,
|
| 688 |
+
"step": 970
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.6218274111675127,
|
| 692 |
+
"grad_norm": 1.3490197658538818,
|
| 693 |
+
"learning_rate": 8.978870172561842e-06,
|
| 694 |
+
"loss": 0.8084,
|
| 695 |
+
"step": 980
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.6281725888324873,
|
| 699 |
+
"grad_norm": 1.2877025604248047,
|
| 700 |
+
"learning_rate": 8.95866268116165e-06,
|
| 701 |
+
"loss": 0.7929,
|
| 702 |
+
"step": 990
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.6345177664974619,
|
| 706 |
+
"grad_norm": 1.5650062561035156,
|
| 707 |
+
"learning_rate": 8.938280409772038e-06,
|
| 708 |
+
"loss": 0.8263,
|
| 709 |
+
"step": 1000
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.6408629441624365,
|
| 713 |
+
"grad_norm": 1.2181209325790405,
|
| 714 |
+
"learning_rate": 8.917724258296204e-06,
|
| 715 |
+
"loss": 0.8137,
|
| 716 |
+
"step": 1010
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.6472081218274112,
|
| 720 |
+
"grad_norm": 1.4872324466705322,
|
| 721 |
+
"learning_rate": 8.896995134314361e-06,
|
| 722 |
+
"loss": 0.8097,
|
| 723 |
+
"step": 1020
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.6535532994923858,
|
| 727 |
+
"grad_norm": 1.3156676292419434,
|
| 728 |
+
"learning_rate": 8.876093953043683e-06,
|
| 729 |
+
"loss": 0.8149,
|
| 730 |
+
"step": 1030
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.6598984771573604,
|
| 734 |
+
"grad_norm": 1.358504295349121,
|
| 735 |
+
"learning_rate": 8.855021637297893e-06,
|
| 736 |
+
"loss": 0.8128,
|
| 737 |
+
"step": 1040
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.666243654822335,
|
| 741 |
+
"grad_norm": 1.4342836141586304,
|
| 742 |
+
"learning_rate": 8.833779117446515e-06,
|
| 743 |
+
"loss": 0.8101,
|
| 744 |
+
"step": 1050
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.6725888324873096,
|
| 748 |
+
"grad_norm": 1.2380530834197998,
|
| 749 |
+
"learning_rate": 8.812367331373806e-06,
|
| 750 |
+
"loss": 0.8046,
|
| 751 |
+
"step": 1060
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.6789340101522843,
|
| 755 |
+
"grad_norm": 1.253306269645691,
|
| 756 |
+
"learning_rate": 8.790787224437334e-06,
|
| 757 |
+
"loss": 0.8255,
|
| 758 |
+
"step": 1070
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.6852791878172588,
|
| 762 |
+
"grad_norm": 1.514151692390442,
|
| 763 |
+
"learning_rate": 8.769039749426256e-06,
|
| 764 |
+
"loss": 0.7946,
|
| 765 |
+
"step": 1080
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.6916243654822335,
|
| 769 |
+
"grad_norm": 1.4850667715072632,
|
| 770 |
+
"learning_rate": 8.747125866519236e-06,
|
| 771 |
+
"loss": 0.8006,
|
| 772 |
+
"step": 1090
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.6979695431472082,
|
| 776 |
+
"grad_norm": 1.4190680980682373,
|
| 777 |
+
"learning_rate": 8.725046543242061e-06,
|
| 778 |
+
"loss": 0.8243,
|
| 779 |
+
"step": 1100
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.7043147208121827,
|
| 783 |
+
"grad_norm": 1.4006381034851074,
|
| 784 |
+
"learning_rate": 8.70280275442492e-06,
|
| 785 |
+
"loss": 0.829,
|
| 786 |
+
"step": 1110
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.7106598984771574,
|
| 790 |
+
"grad_norm": 1.2715387344360352,
|
| 791 |
+
"learning_rate": 8.680395482159364e-06,
|
| 792 |
+
"loss": 0.806,
|
| 793 |
+
"step": 1120
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.7170050761421319,
|
| 797 |
+
"grad_norm": 1.4159283638000488,
|
| 798 |
+
"learning_rate": 8.657825715754947e-06,
|
| 799 |
+
"loss": 0.8173,
|
| 800 |
+
"step": 1130
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.7233502538071066,
|
| 804 |
+
"grad_norm": 1.368446946144104,
|
| 805 |
+
"learning_rate": 8.63509445169554e-06,
|
| 806 |
+
"loss": 0.8042,
|
| 807 |
+
"step": 1140
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.7296954314720813,
|
| 811 |
+
"grad_norm": 1.3700900077819824,
|
| 812 |
+
"learning_rate": 8.612202693595356e-06,
|
| 813 |
+
"loss": 0.8016,
|
| 814 |
+
"step": 1150
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.7360406091370558,
|
| 818 |
+
"grad_norm": 1.4008903503417969,
|
| 819 |
+
"learning_rate": 8.589151452154605e-06,
|
| 820 |
+
"loss": 0.8295,
|
| 821 |
+
"step": 1160
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.7423857868020305,
|
| 825 |
+
"grad_norm": 1.2189836502075195,
|
| 826 |
+
"learning_rate": 8.565941745114901e-06,
|
| 827 |
+
"loss": 0.8234,
|
| 828 |
+
"step": 1170
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.748730964467005,
|
| 832 |
+
"grad_norm": 1.2055974006652832,
|
| 833 |
+
"learning_rate": 8.542574597214314e-06,
|
| 834 |
+
"loss": 0.8034,
|
| 835 |
+
"step": 1180
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.7550761421319797,
|
| 839 |
+
"grad_norm": 1.2510757446289062,
|
| 840 |
+
"learning_rate": 8.519051040142128e-06,
|
| 841 |
+
"loss": 0.815,
|
| 842 |
+
"step": 1190
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.7614213197969543,
|
| 846 |
+
"grad_norm": 1.3542871475219727,
|
| 847 |
+
"learning_rate": 8.495372112493285e-06,
|
| 848 |
+
"loss": 0.8099,
|
| 849 |
+
"step": 1200
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.7677664974619289,
|
| 853 |
+
"grad_norm": 1.3265260457992554,
|
| 854 |
+
"learning_rate": 8.471538859722545e-06,
|
| 855 |
+
"loss": 0.7971,
|
| 856 |
+
"step": 1210
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.7741116751269036,
|
| 860 |
+
"grad_norm": 1.2787420749664307,
|
| 861 |
+
"learning_rate": 8.447552334098311e-06,
|
| 862 |
+
"loss": 0.8031,
|
| 863 |
+
"step": 1220
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.7804568527918782,
|
| 867 |
+
"grad_norm": 1.2956528663635254,
|
| 868 |
+
"learning_rate": 8.42341359465618e-06,
|
| 869 |
+
"loss": 0.8252,
|
| 870 |
+
"step": 1230
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.7868020304568528,
|
| 874 |
+
"grad_norm": 1.6075105667114258,
|
| 875 |
+
"learning_rate": 8.399123707152182e-06,
|
| 876 |
+
"loss": 0.7794,
|
| 877 |
+
"step": 1240
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.7931472081218274,
|
| 881 |
+
"grad_norm": 1.4134018421173096,
|
| 882 |
+
"learning_rate": 8.374683744015728e-06,
|
| 883 |
+
"loss": 0.8111,
|
| 884 |
+
"step": 1250
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.799492385786802,
|
| 888 |
+
"grad_norm": 1.3463298082351685,
|
| 889 |
+
"learning_rate": 8.350094784302253e-06,
|
| 890 |
+
"loss": 0.818,
|
| 891 |
+
"step": 1260
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.8058375634517766,
|
| 895 |
+
"grad_norm": 1.330447793006897,
|
| 896 |
+
"learning_rate": 8.325357913645589e-06,
|
| 897 |
+
"loss": 0.7955,
|
| 898 |
+
"step": 1270
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.8121827411167513,
|
| 902 |
+
"grad_norm": 1.2311888933181763,
|
| 903 |
+
"learning_rate": 8.300474224210018e-06,
|
| 904 |
+
"loss": 0.8042,
|
| 905 |
+
"step": 1280
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.8185279187817259,
|
| 909 |
+
"grad_norm": 1.2119029760360718,
|
| 910 |
+
"learning_rate": 8.27544481464206e-06,
|
| 911 |
+
"loss": 0.7754,
|
| 912 |
+
"step": 1290
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.8248730964467005,
|
| 916 |
+
"grad_norm": 1.3066750764846802,
|
| 917 |
+
"learning_rate": 8.25027079002196e-06,
|
| 918 |
+
"loss": 0.7988,
|
| 919 |
+
"step": 1300
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.8312182741116751,
|
| 923 |
+
"grad_norm": 1.4108072519302368,
|
| 924 |
+
"learning_rate": 8.224953261814912e-06,
|
| 925 |
+
"loss": 0.7966,
|
| 926 |
+
"step": 1310
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.8375634517766497,
|
| 930 |
+
"grad_norm": 1.206554651260376,
|
| 931 |
+
"learning_rate": 8.199493347821963e-06,
|
| 932 |
+
"loss": 0.7973,
|
| 933 |
+
"step": 1320
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.8439086294416244,
|
| 937 |
+
"grad_norm": 1.3971256017684937,
|
| 938 |
+
"learning_rate": 8.173892172130683e-06,
|
| 939 |
+
"loss": 0.7923,
|
| 940 |
+
"step": 1330
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.850253807106599,
|
| 944 |
+
"grad_norm": 1.3277279138565063,
|
| 945 |
+
"learning_rate": 8.148150865065514e-06,
|
| 946 |
+
"loss": 0.7894,
|
| 947 |
+
"step": 1340
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.8565989847715736,
|
| 951 |
+
"grad_norm": 1.0922918319702148,
|
| 952 |
+
"learning_rate": 8.122270563137893e-06,
|
| 953 |
+
"loss": 0.8043,
|
| 954 |
+
"step": 1350
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.8629441624365483,
|
| 958 |
+
"grad_norm": 1.3102174997329712,
|
| 959 |
+
"learning_rate": 8.096252408996043e-06,
|
| 960 |
+
"loss": 0.7988,
|
| 961 |
+
"step": 1360
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.8692893401015228,
|
| 965 |
+
"grad_norm": 1.36167311668396,
|
| 966 |
+
"learning_rate": 8.070097551374543e-06,
|
| 967 |
+
"loss": 0.8137,
|
| 968 |
+
"step": 1370
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.8756345177664975,
|
| 972 |
+
"grad_norm": 1.3062223196029663,
|
| 973 |
+
"learning_rate": 8.043807145043604e-06,
|
| 974 |
+
"loss": 0.8001,
|
| 975 |
+
"step": 1380
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.881979695431472,
|
| 979 |
+
"grad_norm": 1.3194143772125244,
|
| 980 |
+
"learning_rate": 8.017382350758085e-06,
|
| 981 |
+
"loss": 0.8137,
|
| 982 |
+
"step": 1390
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.8883248730964467,
|
| 986 |
+
"grad_norm": 1.1782550811767578,
|
| 987 |
+
"learning_rate": 7.990824335206242e-06,
|
| 988 |
+
"loss": 0.7823,
|
| 989 |
+
"step": 1400
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.8946700507614214,
|
| 993 |
+
"grad_norm": 1.4341142177581787,
|
| 994 |
+
"learning_rate": 7.964134270958222e-06,
|
| 995 |
+
"loss": 0.8075,
|
| 996 |
+
"step": 1410
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.9010152284263959,
|
| 1000 |
+
"grad_norm": 1.3810592889785767,
|
| 1001 |
+
"learning_rate": 7.937313336414287e-06,
|
| 1002 |
+
"loss": 0.8346,
|
| 1003 |
+
"step": 1420
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.9073604060913706,
|
| 1007 |
+
"grad_norm": 1.2569160461425781,
|
| 1008 |
+
"learning_rate": 7.910362715752792e-06,
|
| 1009 |
+
"loss": 0.7885,
|
| 1010 |
+
"step": 1430
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.9137055837563451,
|
| 1014 |
+
"grad_norm": 1.2901798486709595,
|
| 1015 |
+
"learning_rate": 7.8832835988779e-06,
|
| 1016 |
+
"loss": 0.7846,
|
| 1017 |
+
"step": 1440
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.9200507614213198,
|
| 1021 |
+
"grad_norm": 1.369370460510254,
|
| 1022 |
+
"learning_rate": 7.856077181367036e-06,
|
| 1023 |
+
"loss": 0.796,
|
| 1024 |
+
"step": 1450
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.9263959390862944,
|
| 1028 |
+
"grad_norm": 1.3031636476516724,
|
| 1029 |
+
"learning_rate": 7.828744664418121e-06,
|
| 1030 |
+
"loss": 0.82,
|
| 1031 |
+
"step": 1460
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.932741116751269,
|
| 1035 |
+
"grad_norm": 1.371850609779358,
|
| 1036 |
+
"learning_rate": 7.801287254796522e-06,
|
| 1037 |
+
"loss": 0.7746,
|
| 1038 |
+
"step": 1470
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.9390862944162437,
|
| 1042 |
+
"grad_norm": 1.2887086868286133,
|
| 1043 |
+
"learning_rate": 7.773706164781776e-06,
|
| 1044 |
+
"loss": 0.7718,
|
| 1045 |
+
"step": 1480
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.9454314720812182,
|
| 1049 |
+
"grad_norm": 1.215701699256897,
|
| 1050 |
+
"learning_rate": 7.746002612114064e-06,
|
| 1051 |
+
"loss": 0.7974,
|
| 1052 |
+
"step": 1490
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.9517766497461929,
|
| 1056 |
+
"grad_norm": 1.3907893896102905,
|
| 1057 |
+
"learning_rate": 7.718177819940455e-06,
|
| 1058 |
+
"loss": 0.7891,
|
| 1059 |
+
"step": 1500
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.9581218274111675,
|
| 1063 |
+
"grad_norm": 1.279998779296875,
|
| 1064 |
+
"learning_rate": 7.690233016760891e-06,
|
| 1065 |
+
"loss": 0.8199,
|
| 1066 |
+
"step": 1510
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.9644670050761421,
|
| 1070 |
+
"grad_norm": 1.2313257455825806,
|
| 1071 |
+
"learning_rate": 7.662169436373954e-06,
|
| 1072 |
+
"loss": 0.7825,
|
| 1073 |
+
"step": 1520
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.9708121827411168,
|
| 1077 |
+
"grad_norm": 1.3036500215530396,
|
| 1078 |
+
"learning_rate": 7.633988317822394e-06,
|
| 1079 |
+
"loss": 0.7927,
|
| 1080 |
+
"step": 1530
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.9771573604060914,
|
| 1084 |
+
"grad_norm": 1.4679865837097168,
|
| 1085 |
+
"learning_rate": 7.605690905338413e-06,
|
| 1086 |
+
"loss": 0.8148,
|
| 1087 |
+
"step": 1540
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.983502538071066,
|
| 1091 |
+
"grad_norm": 1.1727280616760254,
|
| 1092 |
+
"learning_rate": 7.577278448288745e-06,
|
| 1093 |
+
"loss": 0.8088,
|
| 1094 |
+
"step": 1550
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.9898477157360406,
|
| 1098 |
+
"grad_norm": 1.4299554824829102,
|
| 1099 |
+
"learning_rate": 7.548752201119484e-06,
|
| 1100 |
+
"loss": 0.8154,
|
| 1101 |
+
"step": 1560
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.9961928934010152,
|
| 1105 |
+
"grad_norm": 1.2478923797607422,
|
| 1106 |
+
"learning_rate": 7.520113423300706e-06,
|
| 1107 |
+
"loss": 0.7988,
|
| 1108 |
+
"step": 1570
|
| 1109 |
+
}
|
| 1110 |
+
],
|
| 1111 |
+
"logging_steps": 10,
|
| 1112 |
+
"max_steps": 4728,
|
| 1113 |
+
"num_input_tokens_seen": 0,
|
| 1114 |
+
"num_train_epochs": 3,
|
| 1115 |
+
"save_steps": 50.0,
|
| 1116 |
+
"stateful_callbacks": {
|
| 1117 |
+
"TrainerControl": {
|
| 1118 |
+
"args": {
|
| 1119 |
+
"should_epoch_stop": false,
|
| 1120 |
+
"should_evaluate": false,
|
| 1121 |
+
"should_log": false,
|
| 1122 |
+
"should_save": true,
|
| 1123 |
+
"should_training_stop": false
|
| 1124 |
+
},
|
| 1125 |
+
"attributes": {}
|
| 1126 |
+
}
|
| 1127 |
+
},
|
| 1128 |
+
"total_flos": 3.066955944001798e+18,
|
| 1129 |
+
"train_batch_size": 16,
|
| 1130 |
+
"trial_name": null,
|
| 1131 |
+
"trial_params": null
|
| 1132 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38910cc27a81dfe34946ec142e2ee6616bc16de0ca61d655dc667d70b3b810d8
|
| 3 |
+
size 6904
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|