Dabid commited on
Commit
69c1481
·
1 Parent(s): 353fe4c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: test2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # test2
19
+
20
+ This model is a fine-tuned version of [jcblaise/bert-tagalog-base-cased](https://huggingface.co/jcblaise/bert-tagalog-base-cased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4185
23
+ - Accuracy: 0.8669
24
+ - Precision: 0.8249
25
+ - Recall: 0.8612
26
+ - F1: 0.8426
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | No log | 1.0 | 172 | 0.3674 | 0.8444 | 0.8014 | 0.8295 | 0.8152 |
58
+ | No log | 2.0 | 344 | 0.3508 | 0.8542 | 0.8235 | 0.8243 | 0.8239 |
59
+ | 0.2992 | 3.0 | 516 | 0.3643 | 0.8564 | 0.8596 | 0.7803 | 0.8181 |
60
+ | 0.2992 | 4.0 | 688 | 0.3639 | 0.8622 | 0.8155 | 0.8620 | 0.8381 |
61
+ | 0.2992 | 5.0 | 860 | 0.3803 | 0.864 | 0.8316 | 0.8418 | 0.8367 |
62
+ | 0.1733 | 6.0 | 1032 | 0.3969 | 0.8702 | 0.8352 | 0.8550 | 0.8450 |
63
+ | 0.1733 | 7.0 | 1204 | 0.4185 | 0.8669 | 0.8249 | 0.8612 | 0.8426 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.26.1
69
+ - Pytorch 1.13.1+cu116
70
+ - Tokenizers 0.13.2