--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.717391304347826 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8492 - Accuracy: 0.7174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.3859 | 0.3261 | | No log | 2.0 | 7 | 1.3806 | 0.5217 | | 1.3829 | 2.86 | 10 | 1.3677 | 0.5870 | | 1.3829 | 4.0 | 14 | 1.3037 | 0.6739 | | 1.3829 | 4.86 | 17 | 1.2540 | 0.6522 | | 1.3074 | 6.0 | 21 | 1.1509 | 0.6522 | | 1.3074 | 6.86 | 24 | 1.0882 | 0.6739 | | 1.3074 | 8.0 | 28 | 1.0569 | 0.6522 | | 1.1437 | 8.86 | 31 | 1.0536 | 0.6304 | | 1.1437 | 10.0 | 35 | 0.9993 | 0.6522 | | 1.1437 | 10.86 | 38 | 0.9819 | 0.6739 | | 1.0439 | 12.0 | 42 | 0.9593 | 0.6957 | | 1.0439 | 12.86 | 45 | 0.9359 | 0.6304 | | 1.0439 | 14.0 | 49 | 0.9467 | 0.6522 | | 0.9813 | 14.86 | 52 | 0.9331 | 0.6522 | | 0.9813 | 16.0 | 56 | 0.9386 | 0.6522 | | 0.9813 | 16.86 | 59 | 0.9266 | 0.6739 | | 0.8763 | 18.0 | 63 | 0.8833 | 0.6957 | | 0.8763 | 18.86 | 66 | 0.8679 | 0.6739 | | 0.9187 | 20.0 | 70 | 0.8639 | 0.6957 | | 0.9187 | 20.86 | 73 | 0.8492 | 0.7174 | | 0.9187 | 22.0 | 77 | 0.8846 | 0.6957 | | 0.8067 | 22.86 | 80 | 0.9083 | 0.6522 | | 0.8067 | 24.0 | 84 | 0.9269 | 0.6522 | | 0.8067 | 24.86 | 87 | 0.8849 | 0.6739 | | 0.7248 | 26.0 | 91 | 0.8935 | 0.6522 | | 0.7248 | 26.86 | 94 | 0.8719 | 0.6957 | | 0.7248 | 28.0 | 98 | 0.8759 | 0.6739 | | 0.773 | 28.86 | 101 | 0.8887 | 0.6739 | | 0.773 | 30.0 | 105 | 0.9288 | 0.6522 | | 0.773 | 30.86 | 108 | 0.9041 | 0.6522 | | 0.7467 | 32.0 | 112 | 0.9017 | 0.6522 | | 0.7467 | 32.86 | 115 | 0.8767 | 0.6522 | | 0.7467 | 34.0 | 119 | 0.8993 | 0.6739 | | 0.7323 | 34.29 | 120 | 0.8946 | 0.6522 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0