--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.45652173913043476 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1969 - Accuracy: 0.4565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 34874.7891 | 0.1087 | | No log | 2.0 | 7 | 415543488.0 | 0.4565 | | 107.6051 | 2.86 | 10 | 14879.4717 | 0.1087 | | 107.6051 | 4.0 | 14 | 68935.1875 | 0.1087 | | 107.6051 | 4.86 | 17 | 7599.6079 | 0.1087 | | 61.6907 | 6.0 | 21 | 1392.9758 | 0.1304 | | 61.6907 | 6.86 | 24 | 524.5536 | 0.1739 | | 61.6907 | 8.0 | 28 | 367.8024 | 0.1087 | | 9.2329 | 8.86 | 31 | 27.2661 | 0.4565 | | 9.2329 | 10.0 | 35 | 14.2920 | 0.1087 | | 9.2329 | 10.86 | 38 | 2.9737 | 0.3261 | | 4.2143 | 12.0 | 42 | 114.2135 | 0.3261 | | 4.2143 | 12.86 | 45 | 1.6271 | 0.3261 | | 4.2143 | 14.0 | 49 | 7.7918 | 0.4348 | | 1.8981 | 14.86 | 52 | 3.3329 | 0.3261 | | 1.8981 | 16.0 | 56 | 2.0198 | 0.3261 | | 1.8981 | 16.86 | 59 | 1.4194 | 0.3261 | | 1.5139 | 18.0 | 63 | 1.3169 | 0.4565 | | 1.5139 | 18.86 | 66 | 1.8718 | 0.3261 | | 1.7219 | 20.0 | 70 | 2.1572 | 0.1087 | | 1.7219 | 20.86 | 73 | 2.1683 | 0.3043 | | 1.7219 | 22.0 | 77 | 1.6241 | 0.4565 | | 1.5029 | 22.86 | 80 | 2.1474 | 0.4565 | | 1.5029 | 24.0 | 84 | 1.5354 | 0.4348 | | 1.5029 | 24.86 | 87 | 1.2864 | 0.4565 | | 1.3532 | 26.0 | 91 | 1.3014 | 0.3261 | | 1.3532 | 26.86 | 94 | 1.2604 | 0.4565 | | 1.3532 | 28.0 | 98 | 1.3335 | 0.3043 | | 1.2957 | 28.86 | 101 | 1.2444 | 0.4565 | | 1.2957 | 30.0 | 105 | 1.2858 | 0.3261 | | 1.2957 | 30.86 | 108 | 1.2190 | 0.4783 | | 1.2547 | 32.0 | 112 | 1.2271 | 0.4565 | | 1.2547 | 32.86 | 115 | 1.2194 | 0.4565 | | 1.2547 | 34.0 | 119 | 1.1941 | 0.4565 | | 1.2042 | 34.29 | 120 | 1.1969 | 0.4565 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0