--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6521739130434783 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3719 - Accuracy: 0.6522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.3862 | 0.3261 | | No log | 2.0 | 7 | 1.3857 | 0.4783 | | 1.3859 | 2.86 | 10 | 1.3849 | 0.5435 | | 1.3859 | 4.0 | 14 | 1.3839 | 0.6087 | | 1.3859 | 4.86 | 17 | 1.3834 | 0.6087 | | 1.3844 | 6.0 | 21 | 1.3825 | 0.6087 | | 1.3844 | 6.86 | 24 | 1.3820 | 0.5870 | | 1.3844 | 8.0 | 28 | 1.3812 | 0.5870 | | 1.3831 | 8.86 | 31 | 1.3804 | 0.6304 | | 1.3831 | 10.0 | 35 | 1.3793 | 0.6087 | | 1.3831 | 10.86 | 38 | 1.3787 | 0.6087 | | 1.3815 | 12.0 | 42 | 1.3778 | 0.6087 | | 1.3815 | 12.86 | 45 | 1.3767 | 0.6087 | | 1.3815 | 14.0 | 49 | 1.3757 | 0.6087 | | 1.3794 | 14.86 | 52 | 1.3748 | 0.6087 | | 1.3794 | 16.0 | 56 | 1.3738 | 0.6304 | | 1.3794 | 16.86 | 59 | 1.3730 | 0.6087 | | 1.3766 | 18.0 | 63 | 1.3719 | 0.6522 | | 1.3766 | 18.86 | 66 | 1.3708 | 0.6087 | | 1.3748 | 20.0 | 70 | 1.3699 | 0.6304 | | 1.3748 | 20.86 | 73 | 1.3687 | 0.6304 | | 1.3748 | 22.0 | 77 | 1.3677 | 0.5870 | | 1.372 | 22.86 | 80 | 1.3664 | 0.6304 | | 1.372 | 24.0 | 84 | 1.3655 | 0.5870 | | 1.372 | 24.86 | 87 | 1.3648 | 0.6304 | | 1.3693 | 26.0 | 91 | 1.3640 | 0.6087 | | 1.3693 | 26.86 | 94 | 1.3637 | 0.6087 | | 1.3693 | 28.0 | 98 | 1.3627 | 0.6304 | | 1.3685 | 28.86 | 101 | 1.3624 | 0.5870 | | 1.3685 | 30.0 | 105 | 1.3622 | 0.6087 | | 1.3685 | 30.86 | 108 | 1.3610 | 0.6087 | | 1.3675 | 32.0 | 112 | 1.3605 | 0.6087 | | 1.3675 | 32.86 | 115 | 1.3605 | 0.6087 | | 1.3675 | 34.0 | 119 | 1.3611 | 0.5870 | | 1.3663 | 34.29 | 120 | 1.3608 | 0.6087 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0