--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.10869565217391304 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 113.8184 - Accuracy: 0.1087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 113.8184 | 0.1087 | | No log | 2.0 | 7 | 113.8094 | 0.1087 | | 114.0867 | 2.86 | 10 | 113.7944 | 0.1087 | | 114.0867 | 4.0 | 14 | 113.7881 | 0.1087 | | 114.0867 | 4.86 | 17 | 113.7100 | 0.1087 | | 113.3425 | 6.0 | 21 | 113.5884 | 0.1087 | | 113.3425 | 6.86 | 24 | 113.4998 | 0.1087 | | 113.3425 | 8.0 | 28 | 113.0578 | 0.1087 | | 111.228 | 8.86 | 31 | 112.8053 | 0.1087 | | 111.228 | 10.0 | 35 | 112.5202 | 0.1087 | | 111.228 | 10.86 | 38 | 112.5811 | 0.1087 | | 114.9647 | 12.0 | 42 | 112.6090 | 0.1087 | | 114.9647 | 12.86 | 45 | 112.4973 | 0.1087 | | 114.9647 | 14.0 | 49 | 111.9761 | 0.1087 | | 110.7738 | 14.86 | 52 | 111.8117 | 0.1087 | | 110.7738 | 16.0 | 56 | 111.6589 | 0.1087 | | 110.7738 | 16.86 | 59 | 111.5367 | 0.1087 | | 111.0505 | 18.0 | 63 | 111.7016 | 0.1087 | | 111.0505 | 18.86 | 66 | 111.9068 | 0.1087 | | 111.4545 | 20.0 | 70 | 111.6203 | 0.1087 | | 111.4545 | 20.86 | 73 | 111.1266 | 0.1087 | | 111.4545 | 22.0 | 77 | 110.2879 | 0.1087 | | 111.2779 | 22.86 | 80 | 109.8523 | 0.1087 | | 111.2779 | 24.0 | 84 | 109.5283 | 0.1087 | | 111.2779 | 24.86 | 87 | 109.9590 | 0.1087 | | 110.5166 | 26.0 | 91 | 109.9752 | 0.1087 | | 110.5166 | 26.86 | 94 | 109.5435 | 0.1087 | | 110.5166 | 28.0 | 98 | 109.5712 | 0.1087 | | 108.66 | 28.86 | 101 | 108.8924 | 0.1087 | | 108.66 | 30.0 | 105 | 108.3990 | 0.1087 | | 108.66 | 30.86 | 108 | 108.7050 | 0.1087 | | 109.688 | 32.0 | 112 | 108.7237 | 0.1087 | | 109.688 | 32.86 | 115 | 109.0679 | 0.1087 | | 109.688 | 34.0 | 119 | 108.5750 | 0.1087 | | 109.4549 | 34.29 | 120 | 108.5167 | 0.1087 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0