--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.10869565217391304 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 113.9563 - Accuracy: 0.1087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 113.9563 | 0.1087 | | No log | 2.0 | 7 | 113.9524 | 0.1087 | | 114.2271 | 2.86 | 10 | 113.9454 | 0.1087 | | 114.2271 | 4.0 | 14 | 113.9389 | 0.1087 | | 114.2271 | 4.86 | 17 | 113.9226 | 0.1087 | | 113.5566 | 6.0 | 21 | 113.8982 | 0.1087 | | 113.5566 | 6.86 | 24 | 113.8425 | 0.1087 | | 113.5566 | 8.0 | 28 | 113.7478 | 0.1087 | | 111.6907 | 8.86 | 31 | 113.6538 | 0.1087 | | 111.6907 | 10.0 | 35 | 113.5589 | 0.1087 | | 111.6907 | 10.86 | 38 | 113.5002 | 0.1087 | | 115.67 | 12.0 | 42 | 113.4496 | 0.1087 | | 115.67 | 12.86 | 45 | 113.3752 | 0.1087 | | 115.67 | 14.0 | 49 | 113.2129 | 0.1087 | | 111.8054 | 14.86 | 52 | 113.0828 | 0.1087 | | 111.8054 | 16.0 | 56 | 112.8805 | 0.1087 | | 111.8054 | 16.86 | 59 | 112.9013 | 0.1087 | | 112.3831 | 18.0 | 63 | 112.8123 | 0.1087 | | 112.3831 | 18.86 | 66 | 113.0190 | 0.1087 | | 113.1097 | 20.0 | 70 | 113.2929 | 0.1087 | | 113.1097 | 20.86 | 73 | 112.8861 | 0.1087 | | 113.1097 | 22.0 | 77 | 112.7154 | 0.1087 | | 113.3674 | 22.86 | 80 | 112.6943 | 0.1087 | | 113.3674 | 24.0 | 84 | 112.3937 | 0.1087 | | 113.3674 | 24.86 | 87 | 112.3862 | 0.1087 | | 113.1472 | 26.0 | 91 | 112.2693 | 0.1087 | | 113.1472 | 26.86 | 94 | 112.3107 | 0.1087 | | 113.1472 | 28.0 | 98 | 112.4216 | 0.1087 | | 111.3252 | 28.86 | 101 | 112.3318 | 0.1087 | | 111.3252 | 30.0 | 105 | 112.3517 | 0.1087 | | 111.3252 | 30.86 | 108 | 112.4213 | 0.1087 | | 112.827 | 32.0 | 112 | 112.4838 | 0.1087 | | 112.827 | 32.86 | 115 | 112.4490 | 0.1087 | | 112.827 | 34.0 | 119 | 112.1525 | 0.1087 | | 112.5631 | 34.29 | 120 | 112.1956 | 0.1087 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0