--- license: llama3.2 language: - en pipeline_tag: text-generation tags: - nlp --- # Llama-3.2-1B-Tele-it Model Card ## Model Summary The language model Llama-3.2-1B-Tele-it is an instruct version of [Llama-3.2-1B-Tele](https://huggingface.co/AliMaatouk/Llama-3.2-1B-Tele), which is based on Meta [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) and specialized in telecommunications. It was fine-tuned to follow instructions using Supervised Fine-tuning (SFT) with a combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Open-instruct](https://huggingface.co/datasets/VMware/open-instruct) datasets. ### Context Length The context length of the model is 8192 tokens. ## Usage Llama-3.2-1B-Tele-it has been fine-tuned using pairs of instructions and responses from the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Open-instruct](https://huggingface.co/datasets/VMware/open-instruct) datasets, separated by the "\n" delimiter. Below is an example of how to query the model using this format: ```markdown Prompt: Explain to me Shannon capacity.\n Model: The Shannon capacity is a measure of the maximum amount of information that can be transmitted through a communication channel over a given time period. It is a measure of the channel capacity that takes into account the signal-to-noise ratio (SNR) of the channel and the channel's bandwidth. The formula for the Shannon capacity of a communication channel is: C = log2(1 + SNR) Where: C = Shannon capacity SNR = Signal-to-Noise Ratio ``` ## Sample Code Below we share some code snippets on how to get quickly started with running the model. First, make sure to `pip install transformers`, then copy the snippet corresponding to your hardware and adapt it to your usecase. #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("AliMaatouk/Llama-3.2-1B-Tele-it", torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained("AliMaatouk/Llama-3.2-1B-Tele-it") prompt = "Explain to me Shannon capacity.\n" input_ids = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**input_ids, max_new_tokens=100) generated_tokens = outputs[0, len(input_ids['input_ids'][0]):] response = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(response) ``` #### Running the model on a single / multi GPU ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("AliMaatouk/Llama-3.2-1B-Tele-it", torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("AliMaatouk/Llama-3.2-1B-Tele-it") prompt = "Explain to me Shannon capacity.\n" input_ids = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=100) generated_tokens = outputs[0, len(input_ids['input_ids'][0]):] response = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(response) ``` ## Citation You can find the paper with all details about the model at https://arxiv.org/abs/2409.05314. Please cite it as follows: ```bib @misc{maatouk2024telellmsseriesspecializedlarge, title={Tele-LLMs: A Series of Specialized Large Language Models for Telecommunications}, author={Ali Maatouk and Kenny Chirino Ampudia and Rex Ying and Leandros Tassiulas}, year={2024}, eprint={2409.05314}, archivePrefix={arXiv}, primaryClass={cs.IT}, url={https://arxiv.org/abs/2409.05314}, } ```