--- license: mit metrics: - accuracy base_model: - google/efficientnet-b0 pipeline_tag: image-classification tags: - medical - biology --- # Diabetic Retinopathy Model **Model Information:** - **Architecture:** EfficientNet-B0 - **Task:** Multi-class classification (5 severity levels) - **Dataset:** [Diabetic Retinopathy Dataset](https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-224x224-2019-data) - **Input Size:** 224×224 RGB images **Classes:** 1. No_DR (No Diabetic Retinopathy) 2. Mild 3. Moderate 4. Severe 5. Proliferate_DR **Performance Metrics:** - **Accuracy:** 98.55% - **Precision:** 0.9861 - **Recall:** 0.9855 - **F1-Score:** 0.9856 **Usage:** ```python from shifaa.vision import VisionModelFactory model = VisionModelFactory.create_model( model_type="classification", model_name="Diabetic_Retinopathy" ) result = model.run("fundus_image.jpg", show_image=True) print(f"Severity: {result['predicted_class']}") print(f"Confidence: {result['confidence']:.2f}%") ``` **Confusion Matrix:** ![Confusion Matrix](./DR_CM.png) **Preprocessing:** - Resize to 224×224 - Random horizontal flip (training) - Random rotation ±10° (training) - Normalize: mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] **Training Details:** - **Loss Function:** CrossEntropyLoss - **Optimizer:** Adam (lr=0.001) - **Batch Size:** 64 - **Epochs:** 30 - **Device:** CUDA/CPU ---