Context_DyT / interactor_dyt.py
Abdullah-Nazhat's picture
Upload 3 files
7c33fb0 verified
raw
history blame
2.66 kB
import torch
from torch import nn
class DynamicTanh(nn.Module):
def __init__(self, normalized_shape, alpha_init_value=0.5):
super().__init__()
self.normalized_shape = normalized_shape
self.alpha_init_value = alpha_init_value
self.alpha = nn.Parameter(torch.ones(1) * alpha_init_value)
def forward(self, x):
x = torch.tanh(self.alpha * x)
return x
class GlobalDynamicTanh(nn.Module):
def __init__(self, normalized_shape,sequence_length, alpha_init_value=0.5):
super().__init__()
self.normalized_shape = normalized_shape
self.alpha_init_value = alpha_init_value
self.alpha = nn.Parameter(torch.ones(normalized_shape*sequence_length) * alpha_init_value)
def forward(self, x):
x = torch.tanh(self.alpha * x)
return x
class MemoryUnit(nn.Module):
def __init__(self,dim):
super().__init__()
self.dyt_token = DynamicTanh(dim)
self.p = nn.Linear(dim,dim)
def forward(self, x):
x = self.dyt_token(x)
u, v = x, x
u = self.p(u)
g = u * v
return g
class InteractionUnit(nn.Module):
def __init__(self,dim,num_tokens):
super().__init__()
self.dyt_token = DynamicTanh(dim)
self.dyt_context = GlobalDynamicTanh(dim,num_tokens)
def forward(self, x):
x = self.dyt_token(x)
dim0 = x.shape[0]
dim1 = x.shape[1]
dim2 = x.shape[2]
x = x.reshape([dim0,dim1*dim2])
x = self.dyt_context(x)
x = x.reshape([dim0,dim1,dim2])
return x
class InteractorBlock(nn.Module):
def __init__(self, d_model, num_tokens):
super().__init__()
self.memory = MemoryUnit(d_model)
self.interaction = InteractionUnit(d_model,num_tokens)
def forward(self, x):
residual = x
x = self.interaction(x)
x = x + residual
residual = x
x = self.memory(x)
out = x + residual
return out
class Interactor(nn.Module):
def __init__(self, d_model,num_tokens, num_layers):
super().__init__()
self.model = nn.Sequential(
*[InteractorBlock(d_model,num_tokens) for _ in range(num_layers)]
)
def forward(self, x):
return self.model(x)