| import torch | |
| from torch import nn | |
| class DynamicTanh(nn.Module): | |
| def __init__(self, normalized_shape, alpha_init_value=0.5): | |
| super().__init__() | |
| self.normalized_shape = normalized_shape | |
| self.alpha_init_value = alpha_init_value | |
| self.alpha = nn.Parameter(torch.ones(1) * alpha_init_value) | |
| def forward(self, x): | |
| x = torch.tanh(self.alpha * x) | |
| return x | |
| class GlobalDynamicTanh(nn.Module): | |
| def __init__(self, normalized_shape,sequence_length, alpha_init_value=0.5): | |
| super().__init__() | |
| self.normalized_shape = normalized_shape | |
| self.alpha_init_value = alpha_init_value | |
| self.alpha = nn.Parameter(torch.ones(normalized_shape*sequence_length) * alpha_init_value) | |
| def forward(self, x): | |
| x = torch.tanh(self.alpha * x) | |
| return x | |
| class MemoryUnit(nn.Module): | |
| def __init__(self,dim): | |
| super().__init__() | |
| self.dyt_token = DynamicTanh(dim) | |
| self.p = nn.Linear(dim,dim) | |
| def forward(self, x): | |
| x = self.dyt_token(x) | |
| u, v = x, x | |
| u = self.p(u) | |
| g = u * v | |
| return g | |
| class InteractionUnit(nn.Module): | |
| def __init__(self,dim,num_tokens): | |
| super().__init__() | |
| self.dyt_token = DynamicTanh(dim) | |
| self.dyt_context = GlobalDynamicTanh(dim,num_tokens) | |
| def forward(self, x): | |
| x = self.dyt_token(x) | |
| dim0 = x.shape[0] | |
| dim1 = x.shape[1] | |
| dim2 = x.shape[2] | |
| x = x.reshape([dim0,dim1*dim2]) | |
| x = self.dyt_context(x) | |
| x = x.reshape([dim0,dim1,dim2]) | |
| return x | |
| class InteractorBlock(nn.Module): | |
| def __init__(self, d_model, num_tokens): | |
| super().__init__() | |
| self.memory = MemoryUnit(d_model) | |
| self.interaction = InteractionUnit(d_model,num_tokens) | |
| def forward(self, x): | |
| residual = x | |
| x = self.interaction(x) | |
| x = x + residual | |
| residual = x | |
| x = self.memory(x) | |
| out = x + residual | |
| return out | |
| class Interactor(nn.Module): | |
| def __init__(self, d_model,num_tokens, num_layers): | |
| super().__init__() | |
| self.model = nn.Sequential( | |
| *[InteractorBlock(d_model,num_tokens) for _ in range(num_layers)] | |
| ) | |
| def forward(self, x): | |
| return self.model(x) | |