--- license: bsd-3-clause language: - en pipeline_tag: depth-estimation tags: - IGEV++ --- # IGEV++ This version of RT IGEV has been converted to run on the Axera NPU using **w8a16** quantization. Compatible with Pulsar2 version: 5.0-patch1 ## Convert tools links: For those who are interested in model conversion, you can try to export axmodel through - [The repo of original](https://github.com/gangweiX/IGEV-plusplus) - [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html) ## Support Platform - AX650 - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) - AX8850 - [M.2 Accelerator card](https://docs.m5stack.com/en/ai_hardware/LLM-8850_Card) |Chips|Models |Time| |--|--|--| |AX650|AX650_RTIGEV| 139.803 ms | |AX637|AX637_RTIGEV| 385.72 ms | ## How to use Download all files from this repository to the device ### python env requirement #### pyaxengine https://github.com/AXERA-TECH/pyaxengine ``` wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc2/axengine-0.1.3-py3-none-any.whl pip install axengine-0.1.3-py3-none-any.whl ``` #### others Maybe None. #### Inference with AX650 Host (such as M4N-Dock, a.k.a. 爱芯派 Pro) or AX637 Host Input image (take 1 pair of images as examples): ![Left image](./demo-imgs/Adirondack/im0.png) ![Right image](./demo-imgs/Adirondack/im1.png) run: ```sh # the default target_chip is AX650, the default input is all images in `demo-img` folder python3 infer.py ``` Output image: AXmodel result (take 2 images as examples): ![AX650 output image example](./output-imgs/AX650/AXModel_Disparity_Map-rt-Adirondack.png) ![AX637 output image example](./output-imgs/AX637/AXModel_Disparity_Map-rt-2.png)